Nonlinear system identification employing automatic differentiation

Abstract An optimization based state and parameter estimation method is presented where the required Jacobian matrix of the cost function is computed via automatic differentiation. Automatic differentiation evaluates the programming code of the cost function and provides exact values of the derivatives. In contrast to numerical differentiation it is not suffering from approximation errors and compared to symbolic differentiation it is more convenient to use, because no closed analytic expressions are required. Furthermore, we demonstrate how to generalize the parameter estimation scheme to delay differential equations, where estimating the delay time requires attention.

[1]  Ulrich Parlitz,et al.  Theory and Computation of Covariant Lyapunov Vectors , 2011, Journal of Nonlinear Science.

[2]  Jochen Brocker,et al.  Sensitivity and out‐of‐sample error in continuous time data assimilation , 2011, 1108.5756.

[3]  Manolis I. A. Lourakis Sparse Non-linear Least Squares Optimization for Geometric Vision , 2010, ECCV.

[4]  Mark Kostuk,et al.  Dynamical State and Parameter Estimation , 2009, SIAM J. Appl. Dyn. Syst..

[5]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[6]  Ivan G. Szendro,et al.  On the problem of data assimilation by means of synchronization , 2009 .

[7]  Edward Ott,et al.  Using synchronization of chaos to identify the dynamics of unknown systems. , 2009, Chaos.

[8]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[9]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[10]  J. C. Quinn,et al.  State and parameter estimation using Monte Carlo evaluation of path integrals , 2009, 0912.1581.

[11]  Santo Banerjee,et al.  Adaptive scheme for synchronization-based multiparameter estimation from a single chaotic time series and its applications. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Dibakar Ghosh Nonlinear-observer–based synchronization scheme for multiparameter estimation , 2008 .

[13]  Jochen Brocker,et al.  On Variational Data Assimilation in Continuous Time , 2010, 1002.3564.

[14]  Andrea Walther,et al.  Getting Started with ADOL-C , 2009, Combinatorial Scientific Computing.

[15]  Henk Nijmeijer,et al.  Observers for canonic models of neural oscillators , 2009, 0905.0149.

[16]  U. Parlitz,et al.  State and parameter estimation using unconstrained optimization. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[18]  H Zhang,et al.  Models of cardiac tissue electrophysiology: progress, challenges and open questions. , 2011, Progress in biophysics and molecular biology.

[19]  Jinde Cao,et al.  Parameter identification of dynamical systems from time series. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Henry D. I. Abarbanel,et al.  Effective actions for statistical data assimilation , 2009, 0908.2045.

[21]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[22]  P. Gill,et al.  State and parameter estimation in nonlinear systems as an optimal tracking problem , 2008 .

[23]  James M. Jeanne,et al.  Estimation of parameters in nonlinear systems using balanced synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Parlitz,et al.  Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.

[26]  Mark Kostuk,et al.  Data assimilation with regularized nonlinear instabilities , 2010 .

[27]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[28]  Ulrich Parlitz,et al.  Estimating parameters by autosynchronization with dynamics restrictions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Uwe Naumann,et al.  Combinatorial Scientific Computing , 2012 .

[30]  Henry D I Abarbanel,et al.  Parameter and state estimation of experimental chaotic systems using synchronization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.