Nonlinear system identification employing automatic differentiation
暂无分享,去创建一个
Ulrich Parlitz | Stefan Luther | Jan Schumann-Bischoff | S. Luther | U. Parlitz | J. Schumann-Bischoff | Jan Schumann-Bischoff
[1] Ulrich Parlitz,et al. Theory and Computation of Covariant Lyapunov Vectors , 2011, Journal of Nonlinear Science.
[2] Jochen Brocker,et al. Sensitivity and out‐of‐sample error in continuous time data assimilation , 2011, 1108.5756.
[3] Manolis I. A. Lourakis. Sparse Non-linear Least Squares Optimization for Geometric Vision , 2010, ECCV.
[4] Mark Kostuk,et al. Dynamical State and Parameter Estimation , 2009, SIAM J. Appl. Dyn. Syst..
[5] Louis B. Rall,et al. Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.
[6] Ivan G. Szendro,et al. On the problem of data assimilation by means of synchronization , 2009 .
[7] Edward Ott,et al. Using synchronization of chaos to identify the dynamics of unknown systems. , 2009, Chaos.
[8] Andreas Griewank,et al. Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.
[9] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[10] J. C. Quinn,et al. State and parameter estimation using Monte Carlo evaluation of path integrals , 2009, 0912.1581.
[11] Santo Banerjee,et al. Adaptive scheme for synchronization-based multiparameter estimation from a single chaotic time series and its applications. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] Dibakar Ghosh. Nonlinear-observer–based synchronization scheme for multiparameter estimation , 2008 .
[13] Jochen Brocker,et al. On Variational Data Assimilation in Continuous Time , 2010, 1002.3564.
[14] Andrea Walther,et al. Getting Started with ADOL-C , 2009, Combinatorial Scientific Computing.
[15] Henk Nijmeijer,et al. Observers for canonic models of neural oscillators , 2009, 0905.0149.
[16] U. Parlitz,et al. State and parameter estimation using unconstrained optimization. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[18] H Zhang,et al. Models of cardiac tissue electrophysiology: progress, challenges and open questions. , 2011, Progress in biophysics and molecular biology.
[19] Jinde Cao,et al. Parameter identification of dynamical systems from time series. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] Henry D. I. Abarbanel,et al. Effective actions for statistical data assimilation , 2009, 0908.2045.
[21] E. Lorenz. Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .
[22] P. Gill,et al. State and parameter estimation in nonlinear systems as an optimal tracking problem , 2008 .
[23] James M. Jeanne,et al. Estimation of parameters in nonlinear systems using balanced synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] Parlitz,et al. Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[25] Jürgen Kurths,et al. Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.
[26] Mark Kostuk,et al. Data assimilation with regularized nonlinear instabilities , 2010 .
[27] L. Glass,et al. Oscillation and chaos in physiological control systems. , 1977, Science.
[28] Ulrich Parlitz,et al. Estimating parameters by autosynchronization with dynamics restrictions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[29] Uwe Naumann,et al. Combinatorial Scientific Computing , 2012 .
[30] Henry D I Abarbanel,et al. Parameter and state estimation of experimental chaotic systems using synchronization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.