Linear Function Observers for Linear Time-Varying Systems With Time-Delay: A Parametric Approach

In this paper, a parametric approach to design a Luenberger functional observer for linear time-varying (LTV) systems with time-delay is investigated. Based on the solution to generalized Sylvester equation (GSE), the complete general parametric expressions for the functional observer gain matrices are established with the time-varying coefficient matrices, the time-varying closed-loop system and a group of arbitrary parameters. With the parametric method, the observation error system can be transformed into a linear system with the expected eigenstructure. Finally, a numerical simulation is provided to illustrate the effectiveness of the parametric approach.

[1]  Bin Zhou,et al.  Improved Razumikhin and Krasovskii stability criteria for time-varying stochastic time-delay systems , 2016, Autom..

[2]  Jochen Trumpf Observers for linear time-varying systems , 2007 .

[3]  Peter Xiaoping Liu,et al.  Observer-Based Fuzzy Adaptive Output-Feedback Control of Stochastic Nonlinear Multiple Time-Delay Systems , 2017, IEEE Transactions on Cybernetics.

[4]  Yonggui Kao,et al.  Sliding mode control of Markovian jump systems with incomplete information on time-varying delays and transition rates , 2016, Appl. Math. Comput..

[5]  Michael Malisoff,et al.  Stability Analysis for Time-Varying Systems With Delay Using Linear Lyapunov Functionals and a Positive Systems Approach , 2016, IEEE Transactions on Automatic Control.

[6]  Denis Efimov,et al.  Gramian-based uniform convergent observer for stable LTV systems with delayed measurements , 2019, Int. J. Control.

[7]  Mohamed Darouach,et al.  Functional observers for linear descriptor systems , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[8]  Guo-Ping Liu,et al.  New Delay-Dependent Stability Criteria for Neural Networks With Time-Varying Delay , 2007, IEEE Transactions on Neural Networks.

[9]  Johan A. K. Suykens,et al.  Estimating the unknown time delay in chemical processes , 2016, Eng. Appl. Artif. Intell..

[10]  Bin Zhou,et al.  Razumikhin and Krasovskii stability theorems for time-varying time-delay systems , 2016, Autom..

[11]  Frédéric Rotella,et al.  On Functional Observers for Linear Time-Varying Systems , 2013, IEEE Transactions on Automatic Control.

[12]  Lei Guo,et al.  Force Reflecting Control for Bilateral Teleoperation System Under Time-Varying Delays , 2019, IEEE Transactions on Industrial Informatics.

[13]  Hamid Reza Karimi,et al.  New approaches to positive observer design for discrete-time positive linear systems , 2018, J. Frankl. Inst..

[14]  Peng Shi,et al.  Functional observer based controller for stabilizing Takagi-Sugeno fuzzy systems with time-delays , 2018, J. Frankl. Inst..

[15]  S. K. Korovin,et al.  Minimum-order functional observers , 2010 .

[16]  D. Luenberger An introduction to observers , 1971 .

[17]  Guangdeng Zong,et al.  Observed-based adaptive finite-time tracking control for a class of nonstrict-feedback nonlinear systems with input saturation , 2020, J. Frankl. Inst..

[18]  Emilia Fridman,et al.  Tutorial on Lyapunov-based methods for time-delay systems , 2014, Eur. J. Control.

[19]  Ron J. Patton,et al.  An observer design for linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[20]  Hieu Trinh,et al.  Reduced-order linear functional observer for linear systems , 1999 .

[21]  Qingshan Liu,et al.  Distributed Optimization Based on a Multiagent System in the Presence of Communication Delays , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[22]  Xi-Ming Sun,et al.  LP-based observer design for switched positive linear time-delay systems , 2019, Trans. Inst. Meas. Control.

[23]  Bin Zhou,et al.  Improved Razumikhin and Krasovskii approaches for discrete-time time-varying time-delay systems , 2018, at - Automatisierungstechnik.

[24]  Guang-Ren Duan,et al.  Generalized Sylvester Equations: Unified Parametric Solutions , 2015 .

[25]  Corentin Briat,et al.  Design of LPV observers for LPV time-delay systems: an algebraic approach , 2011, Int. J. Control.

[26]  L. Silverman,et al.  Controllability and Observability in Time-Variable Linear Systems , 1967 .

[27]  Wilfrid Perruquetti,et al.  Unknown input observer for linear time-delay systems , 2015, Autom..

[28]  Bin Zhou,et al.  Construction of strict Lyapunov-Krasovskii functionals for time-varying time-delay systems , 2019, Autom..

[29]  D. Luenberger Observers for multivariable systems , 1966 .

[30]  Saleh Sayyaddelshad,et al.  H ∞  observer design for uncertain nonlinear discrete‐time systems with time‐delay: LMI optimization approach , 2015 .

[31]  G. Duan,et al.  A Parametric Method of Linear Functional Observers for Linear Time-varying Systems , 2019, International Journal of Control, Automation and Systems.

[32]  Xudong Zhao,et al.  Design of multiple-mode observer and multiple-mode controller for switched positive linear systems , 2019 .

[33]  Li Ma,et al.  Observer-based adaptive fuzzy tracking control of MIMO switched nonlinear systems preceded by unknown backlash-like hysteresis , 2019, Inf. Sci..

[34]  Hieu Minh Trinh,et al.  A new approach to state bounding for linear time-varying systems with delay and bounded disturbances , 2014, Autom..

[35]  Bin Zhou,et al.  A new solution to the generalized Sylvester matrix equation AV-EVF=BW , 2006, Syst. Control. Lett..