A Hybrid Segmentation and D-Bar Method for Electrical Impedance Tomography

The regularized D-bar method for electrical impedance tomography (EIT) provides a rigorous mathematical approach for solving the full nonlinear inverse problem directly, i.e., without iterations. It is based on a low-pass filtering in the (nonlinear) frequency domain. However, the resulting D-bar reconstructions are inherently smoothed, leading to a loss of edge distinction. In this paper, a novel method that combines a D-bar approach with the edge-preserving nature of total variation (TV) regularization is presented. The method also includes a data-driven contrast adjustment technique guided by the key functions (CGO solutions) of the D-bar method. The new TV-enhanced D-bar method produces reconstructions with sharper edges and improved contrast. This is achieved by using the TV-induced edges to increase the truncation radius of the scattering data in the nonlinear frequency domain, thereby increasing the radius of the low-pass filter. The algorithm is tested on numerically simulated noisy EIT data and d...

[1]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[2]  Kim Knudsen,et al.  Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem , 2014 .

[3]  Armin Lechleiter,et al.  Newton regularizations for impedance tomography: convergence by local injectivity , 2008 .

[4]  Alberto Ruiz,et al.  Stability of Calderón inverse conductivity problem in the plane , 2007 .

[5]  Elena Beretta,et al.  Lipschitz Stability for the Electrical Impedance Tomography Problem: The Complex Case , 2010, 1008.4046.

[6]  T. Chan,et al.  Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients , 2004 .

[7]  Xue-Cheng Tai,et al.  Global Minimization for Continuous Multiphase Partitioning Problems Using a Dual Approach , 2011, International Journal of Computer Vision.

[8]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[9]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Luminita A. Vese,et al.  A PIECEWISE-CONSTANT BINARY MODEL FOR ELECTRICAL IMPEDANCE TOMOGRAPHY , 2007 .

[11]  Samuli Siltanen,et al.  Electrical impedance tomography and Mittag-Leffler's function , 2004 .

[12]  Samuli Siltanen,et al.  Nonlinear Fourier analysis for discontinuous conductivities: Computational results , 2013, J. Comput. Phys..

[13]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[14]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[15]  Zuowei Shen,et al.  Wavelet Frame Based Multiphase Image Segmentation , 2013, SIAM J. Imaging Sci..

[16]  Matti Lassas,et al.  D-Bar Method for Electrical Impedance Tomography with Discontinuous Conductivities , 2007, SIAM J. Appl. Math..

[17]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[18]  Uri M. Ascher,et al.  On level set regularization for highly ill-posed distributed parameter estimation problems , 2006, J. Comput. Phys..

[19]  Samuli Siltanen,et al.  Numerical computation of complex geometrical optics solutions to the conductivity equation , 2010 .

[20]  Juan Antonio Barceló,et al.  Stability of the Inverse Conductivity Problem in the Plane for Less Regular Conductivities , 2001 .

[21]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[22]  P. Maass,et al.  Sparsity regularization for parameter identification problems , 2012 .

[23]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[24]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[25]  P. Maass,et al.  An analysis of electrical impedance tomography with applications to Tikhonov regularization , 2012 .

[26]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[27]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[28]  Keith M. Rogers,et al.  The Sobolev norm of characteristic functions with applications to the Calderón inverse problem , 2013 .

[29]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[30]  Samuli Siltanen,et al.  Numerical solution method for the dbar-equation in the plane , 2004 .

[31]  Alexandru Tamasan,et al.  Reconstruction of Less Regular Conductivities in the Plane , 2001 .

[32]  Tony F. Chan,et al.  Mumford and Shah Model and Its Applications to Image Segmentation and Image Restoration , 2015, Handbook of Mathematical Methods in Imaging.

[33]  D. Dobson,et al.  An image-enhancement technique for electrical impedance tomography , 1994 .

[34]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[35]  Marko Huhtanen,et al.  Numerical solution of the R-linear Beltrami equation , 2012, Math. Comput..

[36]  Jennifer L. Mueller,et al.  Direct EIT Reconstructions of Complex Admittivities on a Chest-Shaped Domain in 2-D , 2013, IEEE Transactions on Medical Imaging.

[37]  F. Santosa,et al.  ENHANCED ELECTRICAL IMPEDANCE TOMOGRAPHY VIA THE MUMFORD{SHAH FUNCTIONAL , 2001 .

[38]  J L Mueller,et al.  2D D-bar reconstructions of human chest and tank data using an improved approximation to the scattering transform. , 2010, Physiological measurement.

[39]  Melody Dodd,et al.  A Real-time D-bar Algorithm for 2-D Electrical Impedance Tomography Data. , 2014, Inverse problems and imaging.

[40]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[41]  Eric T. Chung,et al.  Electrical impedance tomography using level set representation and total variational regularization , 2005 .

[42]  S J Hamilton,et al.  A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2D , 2012, Inverse problems.

[43]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[44]  Pedro Caro,et al.  Stability of the Calder\'on problem for less regular conductivities , 2012, 1205.2487.

[45]  J C Newell,et al.  Imaging cardiac activity by the D-bar method for electrical impedance tomography , 2006, Physiological measurement.

[46]  Horia D. Cornean,et al.  Reconstruction from one boundary measurement of a potential homogeneous of degree zero , 2005 .

[47]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[48]  Antonin Chambolle,et al.  An Upwind Finite-Difference Method for Total Variation-Based Image Smoothing , 2011, SIAM J. Imaging Sci..

[49]  J C Newell,et al.  Reconstructions of conductive and insulating targets using the D-bar method on an elliptical domain. , 2007, Physiological measurement.

[50]  J. Sylvester,et al.  Ann-dimensional Borg-Levinson theorem , 1988 .

[51]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[52]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[53]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[54]  Tony F. Chan,et al.  A logic framework for active contours on multi-channel images , 2005, J. Vis. Commun. Image Represent..

[55]  Jutta Bikowski,et al.  Direct numerical reconstruction of conductivities in three dimensions using scattering transforms , 2010, 1003.3764.

[56]  Jennifer L. Mueller,et al.  Direct 2-D Reconstructions of Conductivity and Permittivity From EIT Data on a Human Chest , 2015, IEEE Transactions on Medical Imaging.

[57]  Zhou Zhou,et al.  Comparison of total variation algorithms for electrical impedance tomography , 2015, Physiological measurement.

[58]  Kari Astala,et al.  A boundary integral equation for Calderón's inverse conductivity problem , 2006 .

[59]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[60]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[61]  Alberto Ruiz,et al.  Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities , 2010 .

[62]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[63]  Matti Lassas,et al.  A direct reconstruction method for anisotropic electrical impedance tomography , 2014, 1402.1117.

[64]  Samuli Siltanen,et al.  Direct Reconstructions of Conductivities from Boundary Measurements , 2002, SIAM J. Sci. Comput..

[65]  Elisa Francini Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map , 2000 .

[66]  Bünyamin Yildiz,et al.  On the inverse conductivity problem , 1998, Appl. Math. Comput..

[67]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[68]  Andreas Hauptmann,et al.  A data-driven edge-preserving D-bar method for electrical impedance tomography , 2014 .

[69]  Bastian von Harrach,et al.  Monotonicity-Based Shape Reconstruction in Electrical Impedance Tomography , 2013, SIAM J. Math. Anal..

[70]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[71]  Samuli Siltanen,et al.  Direct electrical impedance tomography for nonsmooth conductivities , 2011 .