How to fold a spin chain: Integrable boundaries of the Heisenberg XXX and Inozemtsev hyperbolic models

[1]  S. Belliard,et al.  Drinfeld J Presentation of Twisted Yangians , 2014, 1401.2143.

[2]  R. Klabbers Thermodynamics of Inozemtsev's Elliptic Spin Chain , 2016, 1602.05133.

[3]  C. Wendlandt,et al.  Twisted Yangians of small rank , 2016, 1602.01418.

[4]  Alejandro Gomez The particle-hole transformation, supersymmetry and achiral boundaries of the open Hubbard model , 2014, 1412.3292.

[5]  N. Mackay,et al.  Twisted Yangian symmetry of the open Hubbard model , 2014, 1404.2095.

[6]  S. Belliard,et al.  Drinfel'd basis of twisted Yangians , 2014 .

[7]  Andrew Reeves Tilting Modules for the Symplectic Blob Algebra , 2011, 1111.0146.

[8]  Andrew Reeves A Tensor Space Representation of the Symplectic Blob Algebra , 2011, 1111.0145.

[9]  N. Mackay,et al.  Achiral boundaries and the twisted Yangian of the D5-brane , 2011, 1105.4128.

[10]  V. Caudrelier,et al.  Symmetries of Spin Calogero Models , 2008, 0809.3948.

[11]  P. Martin,et al.  Towers of recollement and bases for diagram algebras: Planar diagrams and a little beyond , 2006, math/0610971.

[12]  P. Martin,et al.  On quantum group symmetry and Bethe ansatz for the asymmetric twin spin chain with integrable boundary , 2005, hep-th/0503019.

[13]  N. Mackay INTRODUCTION TO YANGIAN SYMMETRY IN INTEGRABLE FIELD THEORY , 2004, hep-th/0409183.

[14]  M. Staudacher,et al.  A Novel Long Range Spin Chain and Planar N=4 Super Yang-Mills , 2004, hep-th/0405001.

[15]  A. Doikou On reflection algebras and twisted Yangians , 2004, hep-th/0403277.

[16]  W. Yupeng,et al.  Integrability of the inozemtsev spin chain with open boundary conditions , 2004 .

[17]  M. Staudacher,et al.  Planar N=4 Gauge Theory and the Inozemtsev Long Range Spin Chain , 2004, hep-th/0401057.

[18]  V. Caudrelier,et al.  Integrable N-particle Hamitnonians with Yangian or reflection algebra symmetry , 2003, math-ph/0310028.

[19]  王玉鹏,et al.  Integrability of the Inozemtsev Spin Chain with Open Boundary Conditions , 2004 .

[20]  N. Mackay Twisted Yangians and symmetric pairs , 2003, math/0305285.

[21]  Rafael I. Nepomechie,et al.  BULK AND BOUNDARY S-MATRICES FOR THE SU(N) CHAIN , 1998, hep-th/9803118.

[22]  M. Wadati,et al.  Integrable boundary conditions for the one-dimensional Hubbard model , 1997, cond-mat/9708011.

[23]  F. Gohmann,et al.  The Yangian symmetry of the Hubbard models with variable range hopping , 1995, cond-mat/9512071.

[24]  D. Bernard,et al.  Exact Solution of Long-Range Interacting Spin Chains with Boundaries , 1995 .

[25]  V. Korepin,et al.  The Yangian symmetry of the Hubbard model , 1993, hep-th/9310158.

[26]  D. Bernard An Introduction to Yangian Symmetries , 1992, hep-th/9211133.

[27]  Bernard,et al.  Yangian symmetry of integrable quantum chains with long-range interactions and a new description of states in conformal field theory. , 1992, Physical review letters.

[28]  V. Inozemtsev The extended Bethe Ansatz for infiniteS=1/2 quantum spin chains with non-nearest-neighbor interaction , 1992 .

[29]  G. Olshanskii,et al.  Twisted yangians and infinite-dimensional classical Lie algebras , 1992 .

[30]  V. Inozemtsev On the connection between the one-dimensionalS=1/2 Heisenberg chain and Haldane-Shastry model , 1990 .

[31]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[32]  Shastry,et al.  Exact solution of an S=1/2 Heisenberg antiferromagnetic chain with long-ranged interactions. , 1988, Physical review letters.

[33]  M. Gaudin La fonction d'onde de Bethe , 1983 .

[34]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.