Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations

This note investigates the robust stability of uncertain linear time-invariant systems in polytopic domains by means of parameter-dependent linear matrix inequality (PD-LMI) conditions, exploiting some algebraic properties provided by the uncertainty representation. A systematic procedure to construct a family of finite-dimensional LMI relaxations is provided. The robust stability is assessed by means of the existence of a Lyapunov function, more specifically, a homogeneous polynomially parameter-dependent Lyapunov (HPPDL) function of arbitrary degree. For a given degree , if an HPPDL solution exists, a sequence of relaxations based on real algebraic properties provides sufficient LMI conditions of increasing precision and constant number of decision variables for the existence of an HPPDL function which tend to the necessity. Alternatively, if an HPPDL solution of degree exists, a sequence of relaxations which increases the number of variables and the number of LMIs will provide an HPPDL solution of larger degree. The method proposed can be applied to determine homogeneous parameter-dependent matrix solutions to a wide variety of PD-LMIs by transforming the infinite-dimensional LMI problem described in terms of uncertain parameters belonging to the unit simplex in a sequence of finite-dimensional LMI conditions which converges to the necessary conditions for the existence of a homogeneous polynomially parameter-dependent solution of arbitrary degree. Illustrative examples show the efficacy of the proposed conditions when compared with other methods from the literature.

[1]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[2]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[3]  Carsten W. Scherer,et al.  LMI Relaxations in Robust Control , 2006, Eur. J. Control.

[4]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[5]  Robert E. Skelton,et al.  Stability tests for constrained linear systems , 2001 .

[6]  J. Lasserre,et al.  On parameter-dependent Lyapunov functions for robust stability of linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[7]  C. W. Scherer,et al.  Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness , 2005, SIAM J. Matrix Anal. Appl..

[8]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[9]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[10]  Pedro Luis Dias Peres,et al.  An LMI condition for the robust stability of uncertain continuous-time linear systems , 2002, IEEE Trans. Autom. Control..

[11]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[12]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998 .

[13]  B. Reznick,et al.  A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra , 2001 .

[14]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[15]  C. Scherer Higher-order relaxations for robust LMI problems with verifications for exactness , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[16]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..

[17]  Pierre Apkarian,et al.  Parameterized LMIs in Control Theory , 2000, SIAM J. Control. Optim..

[18]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[19]  Valter J. S. Leite,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[20]  Graziano Chesi,et al.  Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[21]  P.L.D. Peres,et al.  Existence of Homogeneous Polynomial Solutions for Parameter-Dependent Linear Matrix Inequalities with Parameters in the Simplex , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[22]  R.C.L.F. Oliveira,et al.  LMI conditions for the existence of polynomially parameter-dependent Lyapunov functions assuring robust stability , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[23]  P. Peres,et al.  Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions , 2005 .

[24]  Pedro Luis Dias Peres,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, IEEE Trans. Autom. Control..

[25]  S. Bittanti,et al.  Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty , 1996 .

[26]  P. Apkarian,et al.  Parametrized LMIs in control theory , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[27]  Pierre-Alexandre Bliman,et al.  An existence result for polynomial solutions of parameter-dependent LMIs , 2004, Syst. Control. Lett..

[28]  Pedro Luis Dias Peres,et al.  A less conservative LMI condition for the robust stability of discrete-time uncertain systems , 2001, Syst. Control. Lett..

[29]  H. Horisberger,et al.  Regulators for linear, time invariant plants with uncertain parameters , 1976 .

[30]  J. Geromel,et al.  LMI characterization of structural and robust stability: the discrete-time case , 1999 .

[31]  R. Jackson Inequalities , 2007, Algebra for Parents.