Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer

A cross-linkable conjugated polymer, poly[9,9-bis(6′-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis-(3-ethyl(oxetane-3-ethyloxy)-hexyl)-fluorene] (PFN-OX), was investigated as the n-type interface layer for highly efficient and low-temperature processed planar heterojunction perovskite solar cells. Hybrid composite films consisting of PFN-OX and ZnO nanoparticles were utilized as electron selective layers, and a remarkable power conversion efficiency over 16% was achieved. The cross-linkable PFN-OX provided a robust hybrid composite electron selective layer, which is solvent-resistant during the device fabrication process and results in efficient electron extraction and hole blocking. Meanwhile, time-resolved photoluminescence quenching measurements indicated that the charge separation and collection processes were improved for devices based on PFN-OX:ZnO, in comparison with devices using pure PFN-OX or ZnO. The device stability and the hysteresis effect were also discussed. Moreover, this study introduces the cross-linking concept in perovskite solar cells, which will potentially be an effective strategy for obtaining high performance perovskite solar cells.

[1]  Hongbin Wu,et al.  Novel Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene , 2004 .

[2]  Juan Bisquert,et al.  Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[3]  D. Chianese,et al.  The Effects of Solar Cell Capacitance on Calibration Accuracy When using a Flash Simulator , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[4]  Nripan Mathews,et al.  Current progress and future perspectives for organic/inorganic perovskite solar cells , 2014 .

[5]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[6]  Fei Huang,et al.  Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. , 2010, Chemical Society reviews.

[7]  M. Topič,et al.  Optimal I-V Curve Scan Time of Solar Cells and Modules in Light of Irradiance Level , 2012 .

[8]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[9]  Wen-Hau Zhang,et al.  Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells , 2015 .

[10]  Wei Zhang,et al.  High-performance hybrid solar cells employing metal-free organic dye modified TiO2 as photoelectrode , 2012 .

[11]  Viresh Dutta,et al.  Thin‐film solar cells: an overview , 2004 .

[12]  He Yan,et al.  Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. , 2014, Journal of the American Chemical Society.

[13]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[14]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[15]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[16]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[17]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[18]  Hongbin Wu,et al.  High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors. , 2004, Journal of the American Chemical Society.

[19]  Yang Yang,et al.  Electrostatic Self‐Assembly Conjugated Polyelectrolyte‐Surfactant Complex as an Interlayer for High Performance Polymer Solar Cells , 2012 .

[20]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[21]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[22]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[23]  Kun Zhang,et al.  Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition , 2014 .

[24]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[25]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[26]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[27]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[28]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[29]  Gabi Friesen,et al.  Capacitance effects in high-efficiency cells , 1997 .

[30]  Cuikun Lin,et al.  Synthesis, structure and optical properties of different dimensional organic-inorganic perovskites , 2007 .

[31]  David B. Mitzi,et al.  Organic-inorganic electronics , 2001, IBM J. Res. Dev..

[32]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[33]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[34]  Fei Huang,et al.  Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer. , 2014, ACS applied materials & interfaces.

[35]  Xudong Guo,et al.  Cesium carbonate as a surface modification material for organic–inorganic hybrid perovskite solar cells with enhanced performance , 2014 .

[36]  G. Qin,et al.  Enhancing the efficiency of TiO2–perovskite heterojunction solar cell via evaporating Cs2CO3 on TiO2 , 2014 .

[37]  David Cahen,et al.  Photovoltaics: Perovskite cells roll forward , 2014 .

[38]  Jiang Liu,et al.  Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer , 2014 .

[39]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[40]  Karl Leo,et al.  Perovskite photovoltaics: Signs of stability. , 2015, Nature nanotechnology.

[41]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[42]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[43]  Alex K.-Y. Jen,et al.  Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells , 2012 .

[44]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[45]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[46]  Ningyi Yuan,et al.  The effect of ALD-Zno layers on the formation of CH₃NH₃PbI₃ with different perovskite precursors and sintering temperatures. , 2014, Chemical communications.

[47]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[48]  Yang Yang,et al.  Moisture assisted perovskite film growth for high performance solar cells , 2014 .

[49]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[50]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[51]  F. Huang,et al.  High efficiency solution processed inverted white organic light emitting diodes with a cross-linkable amino-functionalized polyfluorene as a cathode interlayer , 2014 .

[52]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[53]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[54]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[55]  Fei Huang,et al.  Small-molecule solar cells with efficiency over 9% , 2014, Nature Photonics.

[56]  J. A. del Cueto,et al.  Correlations of capacitance-voltage hysteresis with thin-film CdTe Solar cell performance during accelerated lifetime testing , 2010, 2010 IEEE International Reliability Physics Symposium.

[57]  J. A. del Cueto,et al.  Striving for a standard protocol for preconditioning or stabilization of polycrystalline thin film photovoltaic modules , 2009, Optics + Photonics for Sustainable Energy.

[58]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[59]  S. R. Shenoy,et al.  Staebler-Wronski effect in hydrogenated amorphous silicon , 1996 .

[60]  David B. Mitzi,et al.  Electroluminescence from an Organic−Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers , 1999 .

[61]  Yanhong Luo,et al.  Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives. , 2014, Chemical communications.

[62]  Tomas Leijtens,et al.  Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. , 2014, ACS nano.

[63]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[64]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[65]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[66]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[67]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[68]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .