Quantifying precision loss in local quantum thermometry via diagonal discord

When quantum information is spread over a system through non-classical correlation, it is robust against local perturbations. However, it also makes retrieving information by local measurements difficult---making global measurement necessary for optimal parameter estimation. In this paper, we consider temperature estimation of a system in a Gibbs state and quantify the separation between the estimation performance of the global optimal measurement scheme and a greedy local measurement scheme by diagonal quantum discord. In a greedy local scheme, instead of global measurements, one performs sequential local measurement on subsystems, which is potentially enhanced by feed-forward communication. We show that for finite dimensional systems, diagonal discord quantifies the difference in the quantum Fisher information quantifying the precision limits for temperature estimation of these two schemes, and analytically obtain the relation in the high-temperature limit. We further verify this result by employing the examples of spins with Heisenberg's interaction.

[1]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[2]  Luis A. Correa,et al.  Enhancement of low-temperature thermometry by strong coupling , 2017 .

[3]  Junde Wu,et al.  Characterizing nonclassical correlations via local quantum Fisher information , 2017, 1711.02323.

[4]  S. Lloyd,et al.  Quantum illumination with Gaussian states. , 2008, Physical review letters.

[5]  M. Paris,et al.  Trade-off between information and disturbance in qubit thermometry , 2018, 1803.00972.

[6]  Vittorio Giovannetti,et al.  Local quantum thermal susceptibility , 2015, Nature Communications.

[7]  Mikhail A. Yurishchev,et al.  Quantum discord in spin-cluster materials , 2011 .

[8]  V. Giovannetti,et al.  Estimating temperature via sequential measurements , 2017, 1701.08531.

[9]  Roberto S. Sarthour,et al.  Experimental implementation of a nonthermalizing quantum thermometer , 2015, Quantum Inf. Process..

[10]  S. Olivares,et al.  Qubit thermometry for micromechanical resonators , 2011, 1103.2875.

[11]  A. Sanpera,et al.  Thermometry precision in strongly correlated ultracold lattice gases , 2015, 1501.03095.

[12]  W. Marsden I and J , 2012 .

[13]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[14]  Mankei Tsang,et al.  Quantum theory of superresolution for two incoherent optical point sources , 2015, 1511.00552.

[15]  M. Paris Achieving the Landau bound to precision of quantum thermometry in systems with vanishing gap , 2015, 1510.08111.

[16]  M. G. A. Paris,et al.  Optimal estimation of joint parameters in phase space , 2012, 1206.4867.

[17]  S. Olivares,et al.  Qubit-assisted thermometry of a quantum harmonic oscillator , 2012, 1205.3465.

[18]  E. Davies,et al.  PROBABILISTIC AND STATISTICAL ASPECTS OF QUANTUM THEORY (North‐Holland Series in Statistics and Probability, 1) , 1984 .

[19]  Jeffrey H. Shapiro,et al.  Optimum mixed-state discrimination for noisy entanglement-enhanced sensing , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[20]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[21]  Jeffrey H. Shapiro,et al.  Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[22]  Stefano Pirandola,et al.  Ultimate Precision Bound of Quantum and Subwavelength Imaging. , 2016, Physical review letters.

[23]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[24]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[25]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[26]  Animesh Datta,et al.  Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.

[27]  Renato Renner Symmetry implies independence , 2007 .

[28]  Shunlong Luo,et al.  Hierarchy of measurement-induced Fisher information for composite states , 2012 .

[29]  Ian R. Petersen,et al.  A Quantum Hamiltonian Identification Algorithm: Computational Complexity and Error Analysis , 2016, IEEE Transactions on Automatic Control.

[30]  Jun Zhang,et al.  Identification of open quantum systems from observable time traces , 2015, 1503.06918.

[31]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[32]  Paul A Knott,et al.  Multiparameter Estimation in Networked Quantum Sensors. , 2017, Physical review letters.

[33]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[34]  K. Modi,et al.  Coherent measurements in quantum metrology , 2012, 1209.2731.

[35]  Gerardo Adesso,et al.  Individual Quantum Probes for Optimal Thermometry. , 2014, Physical review letters.

[36]  Horace P. Yuen,et al.  Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.

[37]  Paola Cappellaro,et al.  Hamiltonian identifiability assisted by single-probe measurement , 2016, 1609.09446.

[38]  Go Kato,et al.  Probing an untouchable environment for its identification and control , 2015 .

[39]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[40]  T. Rudolph,et al.  Single-qubit thermometry , 2014, 1408.6967.

[41]  Norbert Goertz,et al.  Proceedings IEEE International Symposium on Information Theory (ISIT) , 2008 .

[42]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[43]  V. Giovannetti,et al.  Universal locality of quantum thermal susceptibility , 2016, 1611.05738.

[44]  M. Barbieri,et al.  Quantum Simulation of Single-Qubit Thermometry Using Linear Optics. , 2016, Physical review letters.

[45]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[46]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[47]  Karsten Danzmann,et al.  Quantum-dense metrology , 2012, Nature Photonics.

[48]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[49]  Jeffrey H. Shapiro,et al.  Entanglement-enhanced lidars for simultaneous range and velocity measurements , 2017, 1705.06793.

[50]  John M. Tranquada,et al.  Colloquium : Theory of intertwined orders in high temperature superconductors , 2014, 1407.4480.

[51]  Sixia Yu,et al.  Quantum discord of two-qubit X states , 2011, 1102.0181.

[52]  Roman Schnabel,et al.  Reduction of Classical Measurement Noise via Quantum-Dense Metrology. , 2016, Physical review letters.

[53]  Mankei Tsang,et al.  Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit. , 2016, Physical review letters.

[54]  K. Hovhannisyan,et al.  Measuring the temperature of cold many-body quantum systems , 2017, Physical Review B.

[55]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[56]  Dong Xie,et al.  Optimal quantum thermometry by dephasing , 2016, Quantum Inf. Process..

[57]  Paola Cappellaro,et al.  Exact dimension estimation of interacting qubit systems assisted by a single quantum probe , 2017, 1702.03280.