Quantifying precision loss in local quantum thermometry via diagonal discord
暂无分享,去创建一个
[1] M. R. Norman,et al. From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.
[2] Luis A. Correa,et al. Enhancement of low-temperature thermometry by strong coupling , 2017 .
[3] Junde Wu,et al. Characterizing nonclassical correlations via local quantum Fisher information , 2017, 1711.02323.
[4] S. Lloyd,et al. Quantum illumination with Gaussian states. , 2008, Physical review letters.
[5] M. Paris,et al. Trade-off between information and disturbance in qubit thermometry , 2018, 1803.00972.
[6] Vittorio Giovannetti,et al. Local quantum thermal susceptibility , 2015, Nature Communications.
[7] Mikhail A. Yurishchev,et al. Quantum discord in spin-cluster materials , 2011 .
[8] V. Giovannetti,et al. Estimating temperature via sequential measurements , 2017, 1701.08531.
[9] Roberto S. Sarthour,et al. Experimental implementation of a nonthermalizing quantum thermometer , 2015, Quantum Inf. Process..
[10] S. Olivares,et al. Qubit thermometry for micromechanical resonators , 2011, 1103.2875.
[11] A. Sanpera,et al. Thermometry precision in strongly correlated ultracold lattice gases , 2015, 1501.03095.
[12] W. Marsden. I and J , 2012 .
[13] Jacob M. Taylor,et al. High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.
[14] Mankei Tsang,et al. Quantum theory of superresolution for two incoherent optical point sources , 2015, 1511.00552.
[15] M. Paris. Achieving the Landau bound to precision of quantum thermometry in systems with vanishing gap , 2015, 1510.08111.
[16] M. G. A. Paris,et al. Optimal estimation of joint parameters in phase space , 2012, 1206.4867.
[17] S. Olivares,et al. Qubit-assisted thermometry of a quantum harmonic oscillator , 2012, 1205.3465.
[18] E. Davies,et al. PROBABILISTIC AND STATISTICAL ASPECTS OF QUANTUM THEORY (North‐Holland Series in Statistics and Probability, 1) , 1984 .
[19] Jeffrey H. Shapiro,et al. Optimum mixed-state discrimination for noisy entanglement-enhanced sensing , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).
[20] S. Lloyd. Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.
[21] Jeffrey H. Shapiro,et al. Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).
[22] Stefano Pirandola,et al. Ultimate Precision Bound of Quantum and Subwavelength Imaging. , 2016, Physical review letters.
[23] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[24] Antonio-José Almeida,et al. NAT , 2019, Springer Reference Medizin.
[25] Č. Brukner,et al. Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.
[26] Animesh Datta,et al. Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.
[27] Renato Renner. Symmetry implies independence , 2007 .
[28] Shunlong Luo,et al. Hierarchy of measurement-induced Fisher information for composite states , 2012 .
[29] Ian R. Petersen,et al. A Quantum Hamiltonian Identification Algorithm: Computational Complexity and Error Analysis , 2016, IEEE Transactions on Automatic Control.
[30] Jun Zhang,et al. Identification of open quantum systems from observable time traces , 2015, 1503.06918.
[31] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[32] Paul A Knott,et al. Multiparameter Estimation in Networked Quantum Sensors. , 2017, Physical review letters.
[33] A. Rau,et al. Quantum discord for two-qubit X states , 2010, 1002.3429.
[34] K. Modi,et al. Coherent measurements in quantum metrology , 2012, 1209.2731.
[35] Gerardo Adesso,et al. Individual Quantum Probes for Optimal Thermometry. , 2014, Physical review letters.
[36] Horace P. Yuen,et al. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.
[37] Paola Cappellaro,et al. Hamiltonian identifiability assisted by single-probe measurement , 2016, 1609.09446.
[38] Go Kato,et al. Probing an untouchable environment for its identification and control , 2015 .
[39] S. Lloyd,et al. Quantum-enhanced positioning and clock synchronization , 2001, Nature.
[40] T. Rudolph,et al. Single-qubit thermometry , 2014, 1408.6967.
[41] Norbert Goertz,et al. Proceedings IEEE International Symposium on Information Theory (ISIT) , 2008 .
[42] W. Zurek,et al. Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.
[43] V. Giovannetti,et al. Universal locality of quantum thermal susceptibility , 2016, 1611.05738.
[44] M. Barbieri,et al. Quantum Simulation of Single-Qubit Thermometry Using Linear Optics. , 2016, Physical review letters.
[45] M. Nielsen. Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.
[46] H. Yuen. Quantum detection and estimation theory , 1978, Proceedings of the IEEE.
[47] Karsten Danzmann,et al. Quantum-dense metrology , 2012, Nature Photonics.
[48] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[49] Jeffrey H. Shapiro,et al. Entanglement-enhanced lidars for simultaneous range and velocity measurements , 2017, 1705.06793.
[50] John M. Tranquada,et al. Colloquium : Theory of intertwined orders in high temperature superconductors , 2014, 1407.4480.
[51] Sixia Yu,et al. Quantum discord of two-qubit X states , 2011, 1102.0181.
[52] Roman Schnabel,et al. Reduction of Classical Measurement Noise via Quantum-Dense Metrology. , 2016, Physical review letters.
[53] Mankei Tsang,et al. Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit. , 2016, Physical review letters.
[54] K. Hovhannisyan,et al. Measuring the temperature of cold many-body quantum systems , 2017, Physical Review B.
[55] F. Reinhard,et al. Quantum sensing , 2016, 1611.02427.
[56] Dong Xie,et al. Optimal quantum thermometry by dephasing , 2016, Quantum Inf. Process..
[57] Paola Cappellaro,et al. Exact dimension estimation of interacting qubit systems assisted by a single quantum probe , 2017, 1702.03280.