Carbon and nutrient enrichment potential of South Java upwelling area as detected using hindcast biogeochemistry variables

[1]  F. Simanjuntak,et al.  Monsoon Effects on Chlorophyll-a, Sea Surface Temperature, and Ekman Dynamics Variability along the Southern Coast of Lesser Sunda Islands and Its Relation to ENSO and IOD Based on Satellite Observations , 2022, Remote. Sens..

[2]  H. Ogawa,et al.  Spatial and temporal variations in particulate organic carbon in Indonesian waters over two decades , 2021, Marine and Freshwater Research.

[3]  D. Yuan,et al.  Comparison of the positive and negative Indian Ocean Dipole forcing on the Pacific interannual variability through the oceanic channel , 2021, Journal of Oceanography.

[4]  A. Wirasatriya,et al.  Spatio-temporal distribution of chlorophyll-a concentration, sea surface temperature and wind speed using aqua-modis satellite imagery over the Savu Sea, Indonesia , 2021 .

[5]  A. B. Sambah,et al.  Upwelling Impact on Sardinella lemuru during the Indian Ocean Dipole in the Bali Strait, Indonesia , 2021 .

[6]  Franck Bassinot,et al.  Indonesian Throughflow variability over the last two glacial-interglacial cycles: Evidence from the eastern Indian Ocean , 2021 .

[7]  I Gede Mita Anjas Swara,et al.  Analisis Pola Sebaran Area Upwelling di Selatan Indonesia Menggunakan Citra Modis Level 2 , 2021 .

[8]  Y. Masumoto,et al.  Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean , 2021, Biogeosciences.

[9]  M. Brzezinski,et al.  Diatom response to alterations in upwelling and nutrient dynamics associated with climate forcing in the California Current System , 2021, Limnology and Oceanography.

[10]  P. Monerie,et al.  Skilful seasonal predictions of global monsoon summer precipitation with DePreSys3 , 2021, Environmental Research Letters.

[11]  M. R. Firdaus ASPEK BIOLOGI UBUR-UBUR API, Physalia physalis (LINNAEUS, 1758) , 2020, OSEANA.

[12]  L. Juneng,et al.  Differential Influences of Teleconnections from the Indian and Pacific Oceans on Rainfall Variability in Southeast Asia , 2020 .

[13]  T. Yamagata,et al.  Predictability of the Super IOD Event in 2019 and Its Link With El Niño Modoki , 2020, Geophysical Research Letters.

[14]  Sang Heon Lee,et al.  Estimation of the Particulate Organic Carbon to Chlorophyll-a Ratio Using MODIS-Aqua in the East/Japan Sea, South Korea , 2020, Remote. Sens..

[15]  K. Yoneyama,et al.  Years of the Maritime Continent , 2020, Geophysical Research Letters.

[16]  Nabil,et al.  Upwelling index along the South Coast of Java from satellite imagery of wind stress and sea surface temperature , 2020, IOP Conference Series: Earth and Environment.

[17]  B. Lapointe,et al.  Nutrient over-enrichment and light limitation of seagrass communities in the Indian River Lagoon, an urbanized subtropical estuary. , 2020, The Science of the total environment.

[18]  Odile Fanton d'Andon,et al.  Deriving Particulate Organic Carbon in Coastal Waters from Remote Sensing: Inter-Comparison Exercise and Development of a Maximum Band-Ratio Approach , 2019, Remote. Sens..

[19]  L. Q. Avia Change in rainfall per-decades over Java Island, Indonesia , 2019, IOP Conference Series: Earth and Environmental Science.

[20]  A. Wirasatriya,et al.  Spatial Distribution of Chlorophyll-a and Its Relationship with Dissolved Inorganic Phosphate Influenced by Rivers in the North Coast of Java , 2019, Journal of Ecological Engineering.

[21]  M. Ruíz-Villarreal,et al.  Changes in phytoplankton production and upwelling intensity off A Coruña (NW Spain) for the last 28 years , 2019, Ocean Dynamics.

[22]  A. Gordon,et al.  Detecting Change in the Indonesian Seas , 2019, Front. Mar. Sci..

[23]  Hanny Meirinawati,et al.  Karakteristik Fisika dan Kimia Perairan di Laut Jawa – Ambang Dewakang , 2019, Oseanologi dan Limnologi di Indonesia.

[24]  Afdal,et al.  The origin of the suspended particulate matter in the seagrass meadow of tropical waters, an evidence of the stable isotope signatures , 2019, Acta Oceanologica Sinica.

[25]  U. Steiner,et al.  Ecological drivers of jellyfish blooms – the complex life history of a ‘well-known’ medusa (Aurelia aurita) , 2017, bioRxiv.

[26]  Suratno,et al.  The material origin of the particulate organic matter (POM) in the Eastern Indonesian waters , 2019, PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY 2019.

[27]  M. Charette,et al.  Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers , 2018, Nature Geoscience.

[28]  Xuelei Zhang,et al.  Phytoplankton pigment pattern in the subsurface chlorophyll maximum in the South Java coastal upwelling system, Indonesia , 2018, Acta Oceanologica Sinica.

[29]  Qinyan Liu,et al.  The Indonesian throughflow, its variability and centennial change , 2018, Geoscience Letters.

[30]  R. D. Susanto,et al.  Intraseasonal flow and its impact on the chlorophyll-a concentration in the Sunda Strait and its vicinity , 2018, Deep Sea Research Part I: Oceanographic Research Papers.

[31]  Haibo Zhang,et al.  Spatial and temporal variations of particulate organic carbon in the Yellow-Bohai Sea over 2002–2016 , 2018, Scientific Reports.

[32]  S. Anggoro,et al.  Potential Harmful Algal Blooms (HABs) in Segara Anakan Lagoon, Central Java, Indonesia , 2018 .

[33]  W. Balch,et al.  Estimating Particulate Inorganic Carbon Concentrations of the Global Ocean From Ocean Color Measurements Using a Reflectance Difference Approach , 2017 .

[34]  L. Beckley,et al.  Biogeochemical and ecological impacts of boundary currents in the Indian Ocean , 2017 .

[35]  Afdal,et al.  ORGANIC MATTER AND NUTRIENT PROFILE OF THE TWO-CURRENT-REGULATED-ZONE IN THE SOUTHWESTERN SUMATRAN WATERS (SSW) , 2017 .

[36]  Yudo Prasetyo,et al.  IDENTIFIKASI KAWASAN UPWELLING BERDASARKAN VARIABILITAS KLOROFIL-A, SUHU PERMUKAAN LAUT DARI DATA CITRA AQUA MODIS TAHUN 2003-2015 DAN ARUS (Studi Kasus: Perairan Nusa Tenggara Timur) , 2017 .

[37]  T. Prartono,et al.  Nutrient and chlorophyll-a distribution in Makassar Upwelling Region: From MAJAFLOX CRUISE 2015 , 2017 .

[38]  J. Allen,et al.  Biological or microbial carbon pump? The role of phytoplankton stoichiometry in ocean carbon sequestration , 2016 .

[39]  R. Kudela,et al.  An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions , 2016, Geophysical research letters.

[40]  L. Talley,et al.  Anomalous Java cooling at the initiation of positive Indian Ocean Dipole events , 2016 .

[41]  Dongxiao Wang,et al.  Interannual Variability of Equatorial Eastern Indian Ocean Upwelling: Local versus Remote Forcing* , 2016 .

[42]  Yanto,et al.  Space–time variability of Indonesian rainfall at inter-annual and multi-decadal time scales , 2016, Climate Dynamics.

[43]  M. Ikeda,et al.  Influences of Physical Processes and Anthropogenic Influx on Biogeochemical Cycle in the Java Sea: Numerical Model Experiment , 2016 .

[44]  W. Cai,et al.  Aragonite saturation state in a monsoonal upwelling system off Java, Indonesia , 2016 .

[45]  J. T. Turner,et al.  Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump , 2015 .

[46]  C. Layman,et al.  Modification of a seagrass community by benthic jellyfish blooms and nutrient enrichment , 2014 .

[47]  Ning Li,et al.  [Causes of jellyfish blooms and their influence on marine environment]. , 2014, Ying yong sheng tai xue bao = The journal of applied ecology.

[48]  P. V. Nagamani,et al.  Seasonal variability of phytoplankton blooms in the coastal waters along the East coast of India , 2014 .

[49]  M. Mcphaden,et al.  Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales , 2014 .

[50]  F. Qiao,et al.  Influence of the Indonesian Throughflow on the upwelling off the east coast of South Java , 2014 .

[51]  Daniel J. Repeta,et al.  Understanding the Role of the Biological Pump in the Global Carbon Cycle: An Imperative for Ocean Science , 2014 .

[52]  P. Strutton,et al.  Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity , 2014 .

[53]  Songbo Wang,et al.  Effects of surface current patterns on spatial variations of phytoplankton community and environmental factors in Sunda shelf , 2014 .

[54]  Tong Lee,et al.  The Indonesian seas and their role in the coupled ocean–climate system , 2014 .

[55]  Jörg Wiedenmann,et al.  Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival , 2014 .

[56]  S. Polasky,et al.  Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity , 2013, Proceedings of the National Academy of Sciences.

[57]  A. B. Harto,et al.  Upwelling variability along the southern coast of Bali and in Nusa Tenggara waters , 2013, Ocean Science Journal.

[58]  P. Vinayachandran,et al.  Biophysical Processes in the Indian Ocean , 2013 .

[59]  T. Yamagata,et al.  Impacts of Indian Ocean SST biases on the Indian Monsoon: as simulated in a global coupled model , 2013, Climate Dynamics.

[60]  Xing Wei,et al.  Estimates of potential new production in the Java-Sumatra upwelling system , 2012, Chinese Journal of Oceanology and Limnology.

[61]  Bryan A. Franz,et al.  Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three‐band reflectance difference , 2012 .

[62]  J. Purcell,et al.  Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. , 2012, Annual review of marine science.

[63]  Jing Zhang,et al.  The impact of anthropogenic activities on nutrient dynamics in the tropical Wenchanghe and Wenjiaohe Estuary and Lagoon system in East Hainan, China , 2011 .

[64]  I. Lips,et al.  Phytoplankton dynamics affected by the coastal upwelling events in the Gulf of Finland in July–August 2006 , 2010 .

[65]  Irsan S. Brodjonegoro,et al.  Vertical Structure of Kelvin Waves in the Indonesian Throughflow Exit Passages , 2010 .

[66]  Dongyan Liu,et al.  Jellyfish blooms in China: Dominant species, causes and consequences. , 2010, Marine pollution bulletin.

[67]  Y. Sasai,et al.  A numerical investigation of eddy-induced chlorophyll bloom in the southeastern tropical Indian Ocean during Indian Ocean Dipole—2006 , 2010 .

[68]  T. Jennerjahn,et al.  Distribution and burial of organic carbon in sediments from the Indian Ocean upwelling region off Java and Sumatra, Indonesia , 2010 .

[69]  M. Behrenfeld,et al.  Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean dipole during the SeaWiFS era , 2013 .

[70]  P. Swapna,et al.  Significant Influence of the Boreal Summer Monsoon Flow on the Indian Ocean Response during Dipole Events , 2009 .

[71]  Anthony J Richardson,et al.  The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. , 2009, Trends in ecology & evolution.

[72]  Shang-Ping Xie,et al.  Indian Ocean circulation and climate variability , 2009 .

[73]  T. Tozuka,et al.  Chlorophyll‐a bloom along the southern coasts of Java and Sumatra during 2006 , 2009 .

[74]  R. Collin,et al.  Hydromedusa blooms and upwelling events in the Bay of Panama, Tropical East Pacific , 2008 .

[75]  Yan Du,et al.  Interannual Variability of Sea Surface Temperature off Java and Sumatra in a Global GCM , 2008 .

[76]  Richard A. Krishfield,et al.  Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983 , 2008 .

[77]  R. Rykaczewski,et al.  Influence of ocean winds on the pelagic ecosystem in upwelling regions , 2008, Proceedings of the National Academy of Sciences.

[78]  J. Purcell,et al.  Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review , 2007 .

[79]  J. Burkholder,et al.  Seagrasses and eutrophication , 2007 .

[80]  H. Claustre,et al.  Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans , 2007 .

[81]  David Mouillot,et al.  Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area , 2007 .

[82]  T. Gross,et al.  Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay , 2007 .

[83]  P. J. Werdell,et al.  An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation , 2005 .

[84]  Howard R. Gordon,et al.  Calcium carbonate measurements in the surface global ocean based on Moderate‐Resolution Imaging Spectroradiometer data , 2005 .

[85]  G. Meyers,et al.  Indian Ocean Dipolelike Variability in the CSIRO Mark 3 Coupled Climate Model , 2005 .

[86]  B. R. Sidharta The Current Status of Research on Harmful Algal Bloom (Hab) in Indonesia , 2005 .

[87]  G. Meyers,et al.  Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean Dipole , 2003 .

[88]  M. Roughan,et al.  A comparison of observed upwellingmechanisms off the east coast of Australia , 2002 .

[89]  D. Boesch Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems , 2002 .

[90]  E. Mentasti,et al.  Spatial and seasonal variations of major, minor and trace elements in Antarctic seawater. Chemometric investigation of variable and site correlations , 2001 .

[91]  Quanan Zheng,et al.  Upwelling along the coasts of Java and Sumatra and its relation to ENSO , 2001 .

[92]  W. Balch,et al.  Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery , 2001 .

[93]  Janet Sprintall,et al.  Dynamics of the South Java Current in the Indo‐Australian Basin , 1999 .