Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

[1]  Albert H. Mao,et al.  Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions. , 2012, The Journal of chemical physics.

[2]  Wei Zhang,et al.  An accurate and simple quantum model for liquid water. , 2006, The Journal of chemical physics.

[3]  Greg L. Hura,et al.  A high-quality x-ray scattering experiment on liquid water at ambient conditions , 2000 .

[4]  William F. Murphy,et al.  The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule , 1977 .

[5]  Wei Yang,et al.  Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems , 2008, Proceedings of the National Academy of Sciences.

[6]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[7]  Pengyu Y. Ren,et al.  Ion solvation thermodynamics from simulation with a polarizable force field. , 2003, Journal of the American Chemical Society.

[8]  Di Pierro Michele,et al.  Automated Optimization of Potential Parameters. , 2013, Journal of chemical theory and computation.

[9]  Gregory A. Voth,et al.  A quantum model for water: Equilibrium and dynamical properties , 1997 .

[10]  B. Berne,et al.  Quantum effects in liquid water: Path-integral simulations of a flexible and polarizable ab initio model , 2001 .

[11]  Arieh Warshel,et al.  Incorporating electric polarizabilities in water-water interaction potentials , 1990 .

[12]  F. Stillinger,et al.  Improved simulation of liquid water by molecular dynamics , 1974 .

[13]  W. Mooij,et al.  Testing the quality of some recent water-water potentials , 2003 .

[14]  Rodolphe Vuilleumier,et al.  Polarizabilities of individual molecules and ions in liquids from first principles , 2008 .

[15]  H. Eugene Stanley,et al.  Supercooled and glassy water , 2003 .

[16]  Claude Millot,et al.  Revised Anisotropic Site Potentials for the Water Dimer and Calculated Properties , 1998 .

[17]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[18]  V. Sapunov,et al.  A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy–entropy compensation and Born radii) , 2000 .

[19]  P. Åstrand,et al.  Calculation of the Geometry of the Water Molecule in Liquid Water , 1997 .

[20]  D. E. Williams,et al.  Transferable Empirical Nonbonded Potential Functions , 1981 .

[21]  E. Glendening,et al.  An extended basis set ab initio study of alkali metal cation–water clusters , 1967 .

[22]  N. Turro,et al.  Infrared spectroscopy of endohedral HD and D2 in C60. , 2011, The Journal of chemical physics.

[23]  Lee-Ping Wang,et al.  Systematic Parametrization of Polarizable Force Fields from Quantum Chemistry Data. , 2013, Journal of chemical theory and computation.

[24]  Consequences of chain networks on thermodynamic, dielectric and structural properties for liquid water. , 2007, Physical chemistry chemical physics : PCCP.

[25]  T. R. Dyke,et al.  Partially deuterated water dimers: Microwave spectra and structure , 1980 .

[26]  Diwakar Shukla,et al.  OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. , 2013, Journal of chemical theory and computation.

[27]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[28]  Vijay S Pande,et al.  Building Force Fields: An Automatic, Systematic, and Reproducible Approach. , 2014, The journal of physical chemistry letters.

[29]  Yihan Shao,et al.  Dual-basis second-order Moller-Plesset perturbation theory: A reduced-cost reference for correlation calculations. , 2006, The Journal of chemical physics.

[30]  J. E. Quinn,et al.  Cooperative effects in simulated water , 1979, Nature.

[31]  Raúl A. Bustos Marún,et al.  Second virial coefficients of water beyond the conventional first-order quantum correction , 2005 .

[32]  Wim Klopper,et al.  Computational determination of equilibrium geometry and dissociation energy of the water dimer , 2000 .

[33]  Mark S. Gordon,et al.  Evaluation of Charge Penetration Between Distributed Multipolar Expansions , 2000 .

[34]  C. David A variable charge central force model for water and its ionic dissociation products , 1996 .

[35]  Mark S. Gordon,et al.  Electrostatic energy in the effective fragment potential method: Theory and application to benzene dimer , 2007, J. Comput. Chem..

[36]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[37]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules. , 2011, Journal of chemical theory and computation.

[38]  G. Kell,et al.  PVT properties of water - VII. Vapour densities of light and heavy water from 150 to 500°C , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[40]  Anders Nilsson,et al.  Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range. , 2013, The Journal of chemical physics.

[41]  Nohad Gresh,et al.  Improved Formulas for the Calculation of the Electrostatic Contribution to the Intermolecular Interaction Energy from Multipolar Expansion of the Electronic Distribution. , 2003, The journal of physical chemistry. A.

[42]  Sotiris S Xantheas,et al.  The bend angle of water in ice Ih and liquid water: The significance of implementing the nonlinear monomer dipole moment surface in classical interaction potentials. , 2006, The Journal of chemical physics.

[43]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[44]  G. Karlstroem,et al.  New intermolecular energy calculation scheme: applications to potential surface and liquid properties of water , 1990 .

[45]  Kim Palmo,et al.  Inclusion of charge and polarizability fluxes provides needed physical accuracy in molecular mechanics force fields , 2006 .

[46]  P. Mankoo,et al.  The vibrational proton potential in bulk liquid water and ice. , 2008, The Journal of chemical physics.

[47]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[48]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[49]  John E. Dennis,et al.  Algorithm 573: NL2SOL—An Adaptive Nonlinear Least-Squares Algorithm [E4] , 1981, TOMS.

[50]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[51]  Kent R. Wilson,et al.  Thermodynamics and quantum corrections from molecular dynamics for liquid water , 1982 .

[52]  S. Bulusu,et al.  Lowest-energy structures of water clusters (H2O)11 and (H2O)13. , 2006, The journal of physical chemistry. A.

[53]  Edoardo Aprà,et al.  High-level ab initio calculations for the four low-lying families of minima of (H2O)20. II. Spectroscopic signatures of the dodecahedron, fused cubes, face-sharing pentagonal prisms, and edge-sharing pentagonal prisms hydrogen bonding networks. , 2005, The Journal of chemical physics.

[54]  D. Case,et al.  ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins , 2014, Journal of chemical theory and computation.

[55]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[56]  Seyit Kale,et al.  Lewis-inspired representation of dissociable water in clusters and Grotthuss chains , 2012, Journal of biological physics.

[57]  S. Xantheas,et al.  The binding energies of the D2d and S4 water octamer isomers: high-level electronic structure and empirical potential results. , 2004, Journal of Chemical Physics.

[58]  Larry A. Curtiss,et al.  Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity , 1979 .

[59]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[60]  T. Head-Gordon,et al.  Optimizing solute-water van der Waals interactions to reproduce solvation free energies. , 2012, The journal of physical chemistry. B.

[61]  G. Patey,et al.  Fluids of polarizable hard spheres with dipoles and tetrahedral quadrupoles Integral equation results with application to liquid water , 1982 .

[62]  W. V. Gunsteren,et al.  Can the density maximum of water be found by computer simulation , 1994 .

[63]  Donald E. Williams Representation of the molecular electrostatic potential by atomic multipole and bond dipole models , 1988 .

[64]  Pengyu Y. Ren,et al.  The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. , 2013, Journal of chemical theory and computation.

[65]  A. Warshel,et al.  Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n‐Alkane Molecules , 1968 .

[66]  Frank H. Stillinger,et al.  Polarization model for water and its ionic dissociation products , 1978 .

[67]  B. Guillot,et al.  Quantum effects in simulated water by the Feynman–Hibbs approach , 1998 .

[68]  C. E. Dykstra Structures and vibrational frequencies of small water complexes from electrical molecular mechanics , 1989 .

[69]  Gregory A Voth,et al.  Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. , 2004, The Journal of chemical physics.

[70]  Han Myoung Lee,et al.  Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer , 2000 .

[71]  Ming-Jing Hwang,et al.  Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules , 1994, J. Comput. Chem..

[72]  Alan K. Soper,et al.  The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa , 2000 .

[73]  Franz J. Vesely,et al.  N-particle dynamics of polarizable Stockmayer-type molecules , 1977 .

[74]  Greg L. Hura,et al.  What can x-ray scattering tell us about the radial distribution functions of water? , 2000 .

[75]  Gerhard Hummer,et al.  System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions , 2004 .

[76]  Shawn T. Brown,et al.  Advances in methods and algorithms in a modern quantum chemistry program package. , 2006, Physical chemistry chemical physics : PCCP.

[77]  Thomas E. Markland,et al.  Competing quantum effects in the dynamics of a flexible water model. , 2009, The Journal of chemical physics.

[78]  Gregory S. Tschumper,et al.  CCSD(T) complete basis set limit relative energies for low-lying water hexamer structures. , 2009, The journal of physical chemistry. A.

[79]  Alan K. Soper,et al.  A new determination of the structure of water at 25°C , 1986 .

[80]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[81]  D. Truhlar,et al.  Screened Electrostatic Interactions in Molecular Mechanics. , 2014, Journal of chemical theory and computation.

[82]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[83]  David A. Kofke,et al.  Virial coefficients of polarizable water : Applications to thermodynamic properties and molecular clustering , 2007 .

[84]  Michael Levitt,et al.  Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution , 1997 .

[85]  Y. Guissani,et al.  How to build a better pair potential for water , 2001 .

[86]  Michiel Sprik,et al.  A polarizable model for water using distributed charge sites , 1988 .

[87]  Yang Song,et al.  Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method. , 2008, The Journal of chemical physics.

[88]  James R. Rustad,et al.  A polarizable, dissociating molecular dynamics model for liquid water , 1993 .

[89]  Edoardo Aprà,et al.  High-level ab initio calculations for the four low-lying families of minima of (H2O)20. I. Estimates of MP2/CBS binding energies and comparison with empirical potentials. , 2004, The Journal of chemical physics.

[90]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[91]  Edoardo Aprà,et al.  High-Level Ab Initio Electronic Structure Calculations of Water Clusters (H2O)16 and (H2O)17: A New Global Minimum for (H2O)16 , 2010 .

[92]  Kenneth D Jordan,et al.  A second generation distributed point polarizable water model. , 2010, The Journal of chemical physics.

[93]  Pengyu Y. Ren,et al.  Systematic improvement of a classical molecular model of water. , 2013, The journal of physical chemistry. B.

[94]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[95]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[96]  Wei Chen,et al.  Recent development and application of constant pH molecular dynamics , 2014, Molecular simulation.

[97]  Peter A. Kollman,et al.  Implementation of nonadditive intermolecular potentials by use of molecular dynamics: development of a water-water potential and water-ion cluster interactions , 1990 .

[98]  Michael W. Mahoney,et al.  A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions , 2000 .

[99]  G. Pastore,et al.  A fully polarizable and dissociable potential for water , 2003, cond-mat/0309219.

[100]  Sotiris S Xantheas,et al.  Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. , 2008, The Journal of chemical physics.

[101]  R. A. Kuharski,et al.  Quantum mechanical contributions to the structure of liquid water , 1984 .

[102]  S. Scandolo,et al.  Ab initio parameterization of an all-atom polarizable and dissociable force field for water. , 2012, The Journal of chemical physics.

[103]  Bruce J. Berne,et al.  On the Simulation of Quantum Systems: Path Integral Methods , 1986 .

[104]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[105]  Akihiro Morita Water polarizability in condensed phase: Ab initio evaluation by cluster approach , 2002, J. Comput. Chem..

[106]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[107]  Matthew L. Leininger,et al.  Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses , 2002 .

[108]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[109]  G. Kell Density, thermal expansivity, and compressibility of liquid water from 0.deg. to 150.deg.. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale , 1975 .

[110]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[111]  Thomas E. Markland,et al.  Unraveling quantum mechanical effects in water using isotopic fractionation , 2012, Proceedings of the National Academy of Sciences.

[112]  Bernd Engels,et al.  Accurate Intermolecular Potentials with Physically Grounded Electrostatics. , 2011, Journal of chemical theory and computation.

[113]  Sotiris S. Xantheas,et al.  Quantitative Description of Hydrogen Bonding in Chloride−Water Clusters , 1996 .

[114]  Pengyu Y. Ren,et al.  Temperature and Pressure Dependence of the AMOEBA Water Model , 2004 .

[115]  Toshio Yamaguchi,et al.  Neutron-diffraction investigation of the intramolecular structure of a water molecule in the liquid phase at high temperatures , 1991 .

[116]  F. Stillinger,et al.  An orientational perturbation theory for pure liquid water , 1993 .

[117]  K. R. Harris,et al.  Temperature and Volume Dependence of the Viscosity of Water and Heavy Water at Low Temperatures , 2004 .

[118]  Brian J. Smith,et al.  Transition structures for the interchange of hydrogen atoms within the water dimer , 1990 .

[119]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[120]  Michael W. Mahoney,et al.  Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential functions , 2001 .

[121]  Martin Head-Gordon,et al.  Non-Covalent Interactions with Dual-Basis Methods: Pairings for Augmented Basis Sets. , 2009, Journal of chemical theory and computation.

[122]  A. Dymanus,et al.  Magnetic Properties and Molecular Quadrupole Tensor of the Water Molecule by Beam‐Maser Zeeman Spectroscopy , 1970 .

[123]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[124]  Thomas F. Miller,et al.  Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. , 2013, Annual review of physical chemistry.