Generation theory for semigroups of holomorphic mappings in Banach spaces
暂无分享,去创建一个
[1] S. Reich,et al. One-Sided Estimates for the Existence of Null Points of Holomorphic Mappings in Banach Spaces , 1996 .
[2] S. Reich,et al. Fixed point theorems for holomorphic mappings and operator theory in indefinite metric spaces , 1995 .
[3] U. Helmke,et al. Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.
[4] V. Khatskevich,et al. Differentiable operators and nonlinear equations , 1993 .
[5] D. Shoiykhet. Some properties of Fredholm mappings in Banach analytic manifolds , 1993 .
[6] M. Abate. The infinitesimal generators of semigroups of holomorphic maps , 1992 .
[7] P. Mazet,et al. Points fixes d'une application holomorphe d'un domaine borné dans lui-même , 1991 .
[8] S. Reich. The asymptotic behavior of a class of nonlinear semigroups in the Hilbert ball , 1991 .
[9] Itai Shafrir,et al. Nonexpansive iterations in hyperbolic spaces , 1990 .
[10] E. M. Chirka,et al. Complex Analytic Sets , 1989 .
[11] Michel Hervé,et al. Analyticity in Infinite Dimensional Spaces , 1989 .
[12] S. Ôharu,et al. Characterization of nonlinear semigroups associated with semilinear evolution equations , 1989 .
[13] Mohamed Abd-Alla. L'ensemble des points fixes d'une application holomorphe dans un produit fini de boules-unités d'espaces de Hilbert est une sous-variété banachique complexe , 1988 .
[14] M. Abate. Horospheres and iterates of holomorphic maps , 1988 .
[15] E. Vesentini. Semigroups of holomorphic isometries , 1987 .
[16] T. Kuczumow,et al. Fixed Points of Holomorphic Mappings in the Cartesian Product of n Unit Hilbert Balls , 1986, Canadian Mathematical Bulletin.
[17] Gian-Carlo Rota. Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .
[18] J. Vigue. Points fixes d'applications holomorphes dans un produit fini de boules-unités d'espaces de Hilbert , 1984 .
[19] S. Reich,et al. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .
[20] M. A. Krasnoselʹskii,et al. Geometrical Methods of Nonlinear Analysis , 1984 .
[21] E. Vesentini. Su un teorema di Wolff e Denjoy , 1983 .
[22] L. Lempert. Holomorphic retracts and intrinsic metrics in convex domains , 1982 .
[23] S. Reich. A nonlinear Hille-Yosida theorem in Banach spaces , 1981 .
[24] T. J. Suffridge,et al. Holomorphic retracts in complex $n$-space , 1981 .
[25] K. Goebel,et al. Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball , 1980 .
[26] Simeon Reich,et al. Product formulas, nonlinear semigroups, and accretive operators , 1980 .
[27] V. Lakshmikantham,et al. Differential Equations on Closed Subsets of a Banach Space , 1976 .
[28] V. Barbu. Nonlinear Semigroups and di erential equations in Banach spaces , 1976 .
[29] S. Reich. On fixed point theorems obtained from existence theorems for differential equations , 1976 .
[30] Klaus Deimling,et al. Zeros of accretive operators , 1974 .
[31] M. Kreĭn,et al. Stability of Solutions of Differential Equations in Banach Spaces , 1974 .
[32] M. A. Krasnoselʹskii,et al. Approximate Solution of Operator Equations , 1972 .
[33] L. Harris. The Numerical Range of Holomorphic Functions in Banach Spaces , 1971 .
[34] L. Harris. A continuous form of Schwarz’s lemma in normed linear spaces , 1971 .
[35] T. Hayden,et al. Biholomorphic maps in Hilbert space have a fixed point , 1971 .
[36] L. Harris. Schwarz'S lemma in normed linear spaces. , 1969, Proceedings of the National Academy of Sciences of the United States of America.
[37] T. E. Harris,et al. The Theory of Branching Processes. , 1963 .
[38] S. Reich,et al. Global implicit function and fixed point theorems for holomorphic mappings and semigroups , 1996 .
[39] D. Shoikhet,et al. ONE VERSION OF IMPLICIT FUNCTION THEOREM FOR HOLOMORPHIC MAPPINGS , 1994 .
[40] J. W. NeubergerAbstract. Lie Generators for Semigroups of Transformations on a Polish Space , 1993 .
[41] P. Mazet. Les points fixes d'une application homolorphe d'un domaine borné dans lui-même admettent une base de voisinages convexes stables , 1992 .
[42] D. D. Thai. The fixed points of holomorphic maps on a convex domain , 1992 .
[43] Sigurd B. Angenent,et al. Nonlinear analytic semiflows , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[44] Yoshikazu Kobayashi,et al. Semigroups of locally Lipschitzian operators in Banach spaces , 1990 .
[45] J. Arazy. An application of infinite dimensional holomorphy to the geometry of banach spaces , 1987 .
[46] S. Ôharu,et al. Locally Lipschitz continuous perturbations of linear dissipative operators and nonlinear semigroups , 1987 .
[47] Harald Upmeier,et al. Jordan algebras in analysis, operator theory, and quantum mechanics , 1987 .
[48] J. Vigue,et al. Pseudodistances invariantes sur les domaines d'un espace localement convexe , 1985 .
[49] D. Shoikhet,et al. Fixed points of analytic operators in a Banach space and their applications , 1984 .
[50] D. Abts. On injective holomorphic Fredholm mappings of index 0 in complex Banach spaces , 1980 .
[51] Edoardo Vesentini,et al. Holomorphic maps and invariant distances , 1980 .
[52] T. Hayden,et al. FIXED POINTS OF HOLOMORPHIC MAPS IN BANACH SPACES , 1976 .
[53] Richard S. Hamilton,et al. A xed point theorem for holomorphic mappings , 1970 .
[54] A. Friedman. Foundations of modern analysis , 1970 .
[55] Tosio Kato. Perturbation theory for linear operators , 1966 .