THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5

We study the star formation rate (SFR)–stellar mass (M⋆) relation in a self-consistent manner from 0 < z < 2.5 with 22,816 star-forming galaxies selected from the NEWFIRM Medium-Band Survey. We find a significant nonlinear slope of the relation, SFR∝M0.6⋆, and a constant observed scatter of 0.34 dex, independent of redshift and M⋆. However, if we select only blue galaxies we find a linear relation SFR∝M⋆, similar to previous results at z = 0 by Peng et al. This selection excludes red, dusty, star-forming galaxies with higher masses, which brings down the slope. By selecting on LIR/LUV (a proxy for dust obscuration) and the rest-frame U − V colors, we show that star-forming galaxies fall in three distinct regions of the log(SFR)–log(M⋆) plane: (1) actively star-forming galaxies with “normal” dust obscuration and associated colors (54% for log (M⋆) > 10 at 1 < z < 1.5), (2) red star-forming galaxies with low levels of dust obscuration and low-specific SFRs (11%), and (3) dusty, blue star-forming galaxies with high-specific SFRs (7%). The remaining 28% comprises quiescent galaxies. Galaxies on the “normal” star formation sequence show strong trends of increasing dust attenuation with stellar mass and a decreasing specific SFR, with an observed scatter of 0.25 dex. The dusty, blue galaxies reside in the upper envelope of the star formation sequence with remarkably similar spectral shapes at all masses, suggesting that the same physical process is dominating the stellar light. The red, low-dust star-forming galaxies may be in the process of shutting off and migrating to the quiescent population.

[1]  J. Newman,et al.  SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES , 2012, 1203.2611.

[2]  D. Narayanan,et al.  Cosmological implications of a stellar initial mass function that varies with the Jeans mass in galaxies , 2012, 1203.1039.

[3]  A. Cimatti,et al.  Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschel observations , 2012, 1201.4394.

[4]  D. Elbaz,et al.  GOODS-HERSCHEL MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT z ∼ 2 , 2011, 1107.2653.

[5]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[6]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[7]  B. Lundgren,et al.  THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.

[8]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[9]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[10]  A. Cimatti,et al.  The star-formation rates of 1.5 < z < 2.5 massive galaxies , 2010 .

[11]  D. Wake,et al.  THE AGE SPREAD OF QUIESCENT GALAXIES WITH THE NEWFIRM MEDIUM-BAND SURVEY: IDENTIFICATION OF THE OLDEST GALAXIES OUT TO z ∼ 2 , 2010, 1006.5453.

[12]  M.Vaccari,et al.  Herschel unveils a puzzling uniformity of distant dusty galaxies , 2010, 1005.2859.

[13]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[14]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[15]  M. Franx,et al.  WELL-SAMPLED FAR-INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 2 GALAXIES: EVIDENCE FOR SCALED UP COOL GALAXIES , 2010, 1003.3479.

[16]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[17]  C. Steidel,et al.  DUST OBSCURATION AND METALLICITY AT HIGH REDSHIFT: NEW INFERENCES FROM UV, Hα, AND 8 μm OBSERVATIONS OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1002.0837.

[18]  G. Cresci,et al.  THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS , 2009, 0912.1858.

[19]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[20]  G. Magdis,et al.  On the stellar masses of IRAC detected Lyman Break Galaxies at z∼ 3 , 2009, 0909.3950.

[21]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[22]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[23]  D. Thompson,et al.  STAR FORMATION AND DUST OBSCURATION AT z ≈ 2: GALAXIES AT THE DAWN OF DOWNSIZING , 2009, 0905.1674.

[24]  Takamitsu Miyaji,et al.  THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG , 2009, 0903.2062.

[25]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[26]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[27]  E. Gawiser,et al.  THE EVOLUTION OF THE SPECIFIC STAR FORMATION RATE OF MASSIVE GALAXIES TO z ∼ 1.8 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2008, 0809.1426.

[28]  A. Georgakakis,et al.  AEGIS-X: THE CHANDRA DEEP SURVEY OF THE EXTENDED GROTH STRIP , 2008, 0809.1349.

[29]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[30]  S. Wuyts,et al.  FIREWORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-selected Galaxies , 2008 .

[31]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[32]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[33]  H. Rix,et al.  The Dependence of Star Formation on Galaxy Stellar Mass , 2007, astro-ph/0702208.

[34]  P. P. van der Werf,et al.  What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.

[35]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[36]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[37]  P. P. van der Werf,et al.  IRAC Mid-Infrared Imaging of the Hubble Deep Field-South: Star Formation Histories and Stellar Masses of Red Galaxies at z > 2 , 2005, astro-ph/0504219.

[38]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[39]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[40]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[41]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[42]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[43]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[44]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[45]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.