Synthesis and Ligand Exchange of Thiol-Capped Silicon Nanocrystals.

Hydride-terminated silicon (Si) nanocrystals were capped with dodecanethiol by a thermally promoted thiolation reaction. Under an inert atmosphere, the thiol-capped nanocrystals exhibit photoluminescence (PL) properties similar to those of alkene-capped Si nanocrystals, including size-tunable emission wavelength, relatively high quantum yields (>10%), and long radiative lifetimes (26-280 μs). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed that the ligands attach to the nanocrystal surface via covalent Si-S bonds. The thiol-capping layer, however, readily undergoes hydrolysis and severe degradation in the presence of moisture. Dodecanethiol could be exchanged with dodecene by hydrosilylation for enhanced stability.

[1]  P. F. Szajowski,et al.  Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals , 1993, Science.

[2]  Martin A. Green,et al.  Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications , 2006 .

[3]  T. Krauss,et al.  Silicon nanostructures for photonics and photovoltaics. , 2014, Nature nanotechnology.

[4]  M. Fleischauer,et al.  Size-dependent reactivity in hydrosilylation of silicon nanocrystals. , 2011, Journal of the American Chemical Society.

[5]  M. Swihart,et al.  Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF-HNO3 etching. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[6]  S. Moore,et al.  The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. , 1963, The Journal of biological chemistry.

[7]  A. Haas The Chemistry of Silicon-Sulfur Compounds , 1965 .

[8]  M. Willinger,et al.  Solution-Processed Networks of Silicon Nanocrystals: The Role of Internanocrystal Medium on Semiconducting Behavior , 2011 .

[9]  Giacomo Bergamini,et al.  Silicon Nanocrystals Functionalized with Pyrene Units: Efficient Light-Harvesting Antennae with Bright Near-Infrared Emission. , 2014, The journal of physical chemistry letters.

[10]  B. Korgel,et al.  Corrosion Resistance of Thiol- and Alkene-Passivated Germanium Nanowires , 2010 .

[11]  B. Korgel,et al.  Colloidal silicon nanorod synthesis. , 2009, Nano letters.

[12]  G. Lucovsky,et al.  Structural interpretation of the vibrational spectra of a-Si: H alloys , 1979 .

[13]  D. Armstrong,et al.  EFFECTS OF PH IN THE GAMMA-RADIOLYSIS OF AQUEOUS SOLUTIONS OF CYSTEINE AND METHYL MERCAPTAN, , 1964 .

[14]  Tobias Vossmeyer,et al.  Self-Assembled Gold Nanoparticle/Alkanedithiol Films: Preparation, Electron Microscopy, XPS-Analysis, Charge Transport and Vapor-Sensing Properties , 2003 .

[15]  D. Grainger,et al.  X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces , 1996 .

[16]  M. Dasog,et al.  Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. , 2014, ACS nano.

[17]  Size independent blue luminescence in nitrogen passivated silicon nanocrystals , 2012 .

[18]  G. Ozin,et al.  Visible colloidal nanocrystal silicon light-emitting diode. , 2011, Nano letters.

[19]  U. Landman,et al.  Ultrastable silver nanoparticles , 2013, Nature.

[20]  Matthew G. Panthani,et al.  Graphene-Supported High-Resolution TEM and STEM Imaging of Silicon Nanocrystals and their Capping Ligands , 2012 .

[21]  Yixuan Yu,et al.  Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[22]  B. Korgel,et al.  Silicon nanocrystal superlattices. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Hong Ding,et al.  Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. , 2010, ACS nano.

[24]  Susan M. Kauzlarich,et al.  Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. , 2013, ACS nano.

[25]  Junwei Wei,et al.  Synthesis of Ligand-Stabilized Silicon Nanocrystals with Size-Dependent Photoluminescence Spanning Visible to Near-Infrared Wavelengths , 2012 .

[26]  M. Friedman,et al.  Reduction of protein disulfide bonds by sodium hydride in dimethyl sulfoxide. , 1967, Biochemical and biophysical research communications.

[27]  M. Iqbal,et al.  Surface-induced alkene oligomerization: does thermal hydrosilylation really lead to monolayer protected silicon nanocrystals? , 2013, Journal of the American Chemical Society.

[28]  B. Korgel,et al.  A single-step reaction for silicon and germanium nanorods. , 2014, Chemistry.

[29]  Ken-Tye Yong,et al.  Biocompatible luminescent silicon quantum dots for imaging of cancer cells. , 2008, ACS nano.

[30]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[31]  L. H. Sommer,et al.  Stereochemistry of Asymmetric Silicon. The Silicon-Sulfur Bond , 1966 .

[32]  Yung Sam Kim,et al.  Anomalous Fragmentation of Hydrated Clusters of DNA Base Adenine in UV Photoionization , 2000 .

[33]  R. Bruce Lennox,et al.  Gold−Sulfur Bonding in 2D and 3D Self-Assembled Monolayers: XPS Characterization , 2000 .

[34]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[35]  G. Ozin,et al.  Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. , 2012, Nano letters.

[36]  Lorenzo Pavesi,et al.  Silicon Nanocrystals Fundamentals Synthesis and Applications , 2010 .

[37]  Brian A. Korgel,et al.  Rapid SFLS Synthesis of Si Nanowires Using Trisilane with In situ Alkyl-Amine Passivation , 2011 .

[38]  J. L. Hueso,et al.  Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging. , 2010, Small.

[39]  B. Korgel,et al.  Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics. , 2014, Nanoscale.

[40]  B. Korgel,et al.  Colloidal magnetic nanocrystals: synthesis, properties and applications , 2007 .

[41]  Adsorption and thermal decomposition of H2S on Si(100) , 2002 .

[42]  Louis E. Brus,et al.  Luminescence of silicon materials : chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon , 1994 .

[43]  Rebecca J. Anthony,et al.  Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence. , 2010, Nano letters.

[44]  J. Kelly,et al.  X-ray Absorption Spectroscopy of Functionalized Silicon Nanocrystals , 2010 .

[45]  Stephen Y. Chou,et al.  A Silicon Single-Electron Transistor Memory Operating at Room Temperature , 1997, Science.

[46]  D. M. Kroll,et al.  Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals. , 2012, ACS nano.

[47]  Lih Y. Lin,et al.  Brightly photoluminescent phosphor materials based on silicon quantum dots with oxide shell passivation. , 2012, Optics Express.

[48]  C. Hessel,et al.  Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si−SiO2 Composites and Freestanding Hydride-Surface-Terminated Silicon Nanoparticles , 2006 .

[49]  Paul Mulvaney,et al.  Gold Nanoparticles: Past, Present, and Future , 2010 .

[50]  J. Wall Disulfide bonds: determination, location, and influence on molecular properties of proteins. , 1971, Journal of agricultural and food chemistry.

[51]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.

[52]  V. Klimov,et al.  Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. , 2011, Journal of the American Chemical Society.

[53]  Yixuan Yu,et al.  Colloidal luminescent silicon nanorods. , 2013, Nano letters.

[54]  H. Miyama,et al.  Preparation of size-controlled CdS colloids in water and their optical properties , 1988 .

[55]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .