Optimal switching control design for polynomial systems: an LMI approach

We propose a new LMI approach to the design of optimal switching sequences for polynomial dynamical systems with state constraints. We formulate the switching design problem as an optimal control problem which is then relaxed to a linear programming (LP) problem in the space of occupation measures. This infinite-dimensional LP can be solved numerically and approximately with a hierarchy of convex finite-dimensional LMIs. In contrast with most of the existing work on LMI methods, we have a guarantee of global optimality, in the sense that we obtain an asympotically converging (i.e. with vanishing conservatism) hierarchy of lower bounds on the achievable performance. We also explain how to construct an almost optimal switching sequence.

[1]  Denis Arzelier,et al.  Moment LMI approach to LTV impulsive control , 2013, 52nd IEEE Conference on Decision and Control.

[2]  Alberto Bemporad,et al.  Optimal control of continuous-time switched affine systems , 2006, IEEE Transactions on Automatic Control.

[3]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[4]  Christos G. Cassandras,et al.  Optimal control of a class of hybrid systems , 2001, IEEE Trans. Autom. Control..

[5]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[6]  Jamal Daafouz,et al.  Suboptimal Switching Control Consistency Analysis for Switched Linear Systems , 2013, IEEE Transactions on Automatic Control.

[7]  Jamal Daafouz,et al.  Dynamic output feedback Hºº control of switched linear systems. , 2011 .

[8]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[9]  Yohann de Castro,et al.  Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.

[10]  Didier Henrion,et al.  Mean Squared Error Minimization for Inverse Moment Problems , 2012 .

[11]  D. Wishart Introduction to the Mathematical Theory of Control Processes. Volume 1—Linear Equations and Quadratic Criteria , 1969 .

[12]  Dmitry Batenkov,et al.  Complete algebraic reconstruction of piecewise-smooth functions from Fourier data , 2012, Math. Comput..

[13]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[14]  Benedetto Piccoli,et al.  Hybrid systems and optimal control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[15]  Shuzhi Sam Ge,et al.  Switched Linear Systems , 2005 .

[16]  Panos J. Antsaklis,et al.  Results and Perspectives on Computational Methods for Optimal Control of Switched Systems , 2003, HSCC.

[17]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[18]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[19]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[20]  Patrizio Colaneri,et al.  Dynamic Output Feedback Control of Switched Linear Systems , 2008, IEEE Transactions on Automatic Control.

[21]  Raymond A. DeCarlo,et al.  Optimal control of switching systems , 2005, Autom..

[22]  Peter E. Caines,et al.  On the Hybrid Optimal Control Problem: Theory and Algorithms , 2007, IEEE Transactions on Automatic Control.

[23]  Denis Arzelier,et al.  Measures and LMI for impulsive optimal control with applications to space rendezvous problems , 2012, 2012 American Control Conference (ACC).

[24]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[25]  Frédéric Kratz,et al.  Time optimal control of hybrid systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[26]  A. Rantzer,et al.  Optimal control of hybrid systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[27]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[28]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[29]  Emmanuel Trélat,et al.  Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..

[30]  Jamal Daafouz,et al.  Dynamic output feedback Hinfinity control of switched linear systems , 2011, Autom..

[31]  Frédéric Kratz,et al.  An Optimal Control Approach for Hybrid Systems , 2003, Eur. J. Control.

[32]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[33]  Hai Lin,et al.  Switched Linear Systems: Control and Design , 2006, IEEE Transactions on Automatic Control.