Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells

Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3%abs for an ideal Si cell of 3-μm thickness and the escape angle restricted to 2.767° under AM1.5 direct illumination. Applying the model to current high-efficiency cell technologies, we find that a heterojunction-type device with better surface and contact passivation is better suited to escape angle restriction than a homojunction type device. In these more realistic cell models, we also find that there is little benefit gained by restricting the escape angle to less than 10°. The benefits of combining moderate escape angle restriction with low to moderate concentration offers further efficiency gains. Finally, we consider two potential structures for escape angle restriction: a narrowband graded index optical multilayer and a broadband ray optical structure. The broadband structure, which provides greater angle restriction, allows for higher efficiencies and much thinner cells than the narrowband structure.

[1]  G. Bauhuis,et al.  Maximal power output by solar cells with angular confinement. , 2014, Optics express.

[2]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[3]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[4]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[5]  Daniel Feuermann,et al.  Photovoltaic performance enhancement by external recycling of photon emission , 2013 .

[6]  Harry A. Atwater,et al.  Highly efficient GaAs solar cells by limiting light emission angle , 2013, Light: Science & Applications.

[7]  S. Glunz,et al.  Improved quantitative description of Auger recombination in crystalline silicon , 2012 .

[8]  C. Ballif,et al.  Current Losses at the Front of Silicon Heterojunction Solar Cells , 2012, IEEE Journal of Photovoltaics.

[9]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[10]  Harry A. Atwater,et al.  Microphotonic parabolic light directors fabricated by two-photon lithography , 2011 .

[11]  J. Fossum,et al.  A novel low cost 25μm thin exfoliated monocrystalline Si solar cell technology , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[12]  S. Kurtz,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2011, IEEE Journal of Photovoltaics.

[13]  F. Kopp,et al.  Epitaxially grown crystalline silicon thin-film solar cells reaching 16.5% efficiency with basic cell process , 2011 .

[14]  David D. Smith,et al.  Generation 3: Improved performance at lower cost , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[15]  Thomas Kirchartz,et al.  Directional selectivity and ultra‐light‐trapping in solar cells , 2008 .

[16]  Martin A. Green,et al.  Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients , 2008 .

[17]  Thomas Kirchartz,et al.  Rugate filter for light-trapping in solar cells. , 2008, Optics express.

[18]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[19]  P. Altermatt,et al.  Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing , 2003 .

[20]  A. Schenk Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation , 1998 .

[21]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[22]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[23]  B. Bovard Rugate filter theory: an overview. , 1993, Applied optics.

[24]  M. Green,et al.  Intrinsic carrier concentration and minority‐carrier mobility of silicon from 77 to 300 K , 1993 .

[25]  Eli Yablonovitch,et al.  Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .

[26]  A. Luque The confinement of light in solar cells , 1991 .

[27]  W. Southwell Using apodization functions to reduce sidelobes in rugate filters. , 1989, Applied optics.

[28]  W H Southwell,et al.  Codeposition of continuous composition rugate filters. , 1989, Applied optics.

[29]  M. Green,et al.  The limiting efficiency of silicon solar cells under concentrated sunlight , 1986, IEEE Transactions on Electron Devices.

[30]  H. Demiryont,et al.  Optical properties of SiO2-TiO2 composite films. , 1985, Applied optics.

[31]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[32]  W H Southwell,et al.  Gradient-index antireflection coatings. , 1983, Optics letters.

[33]  E. Yablonovitch Statistical ray optics , 1982 .

[34]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[35]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[36]  K. Van Nieuwenhuysen,et al.  Epitaxially grown emitters for thin film silicon solar cells result in 16% efficiency , 2010 .

[37]  J. Nelson The physics of solar cells , 2003 .

[38]  C H Chen,et al.  Mixed films of TiO(2)-SiO(2) deposited by double electron-beam coevaporation. , 1996, Applied optics.

[39]  O. Heavens Handbook of Optical Constants of Solids II , 1992 .

[40]  Roland Winston,et al.  High Collection Nonimaging Optics , 1989, Other Conferences.