An Analytical Model for Optical Polarimetric Imaging Systems

Optical polarization has shown promising applications in passive remote sensing. However, the combined effects of the scene characteristics, the sensor configurations, and the different processing algorithm implementations on the overall system performance have not been systematically studied. To better understand the effects of various system attributes and help optimize the design and use of polarimetric imaging systems, an analytical model has been developed to predict the system performance. The model propagates the first- and second-order statistics of radiance from a scene model to a sensor model and, finally, to a processing model. Validations with data collected from a division of time polarimeter are presented. Based on the analytical model, we then define a signal-to-noise ratio of the degree of linear polarization and receiver operating characteristic curves as two different system performance metrics to evaluate the polarimetic signatures of different objects, as well as the target detection performance. Several examples are presented to show the potential applications of the analytical model for system analysis.

[1]  Michael G. Gartley,et al.  Polarimetric modeling of remotely sensed scenes in the thermal infrared , 2007 .

[2]  Quan Pan,et al.  Object Detection by Spectropolarimeteric Imagery Fusion , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[3]  John P. Kerekes,et al.  Analytical modeling of optical polarimetric imaging systems , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[4]  John R. Schott,et al.  A novel BRDF measurement technique with spatial resolution-dependent spectral variance , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[5]  John P. Kerekes,et al.  Hyperspectral Imaging System Modeling , 2003 .

[6]  Terrance E. Boult,et al.  Constraining Object Features Using a Polarization Reflectance Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Jeffrey A Fessler,et al.  Joint reconstruction of Stokes images from polarimetric measurements. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  David A. Landgrebe,et al.  An analytical model of Earth-observational remote sensing systems , 1991, IEEE Trans. Syst. Man Cybern..

[9]  Michael G. Gartley,et al.  Topological anomaly detection performance with multispectral polarimetric imagery , 2009, Defense + Commercial Sensing.

[10]  J Scott Tyo,et al.  Band limited data reconstruction in modulated polarimeters. , 2011, Optics express.

[11]  Optical Remote Sensing: Science and Technology , 2007 .

[12]  Didier Tanré,et al.  Polarized reflectance of bare soils and vegetation: measurements and models , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Edward N Pugh,et al.  Adaptive algorithms for two-channel polarization sensing under various polarization statistics with nonuniform distributions. , 2006, Applied optics.

[14]  Alan D. Raisanen,et al.  Dynamic scene generation, multimodal sensor design, and target tracking demonstration for hyperspectral/polarimetric performance-driven sensing , 2010, Defense + Commercial Sensing.

[15]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[16]  P. J. Curran,et al.  Remote sensing using partially polarized light , 1986 .

[17]  R. James,et al.  Polarimetric Remote Sensing in the Visible to Near Infrared , 2005 .

[18]  J. Tyo Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error. , 2002, Applied optics.

[19]  Lingfei Meng Analytical Modeling, Performance Analysis, and Optimization of Polarimetric Imaging System , 2012 .

[20]  Antonello De Martino,et al.  Adapted polarization state contrast image. , 2009, Optics express.

[21]  Vincent Devlaminck,et al.  Segmentation of rough surfaces using a polarization imaging system. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Michael D. Presnar,et al.  Modeling and simulation of adaptive multimodal optical sensors for target tracking in the visible to near infrared , 2010 .

[23]  Mehdi Alouini,et al.  Degree of polarization estimation in the presence of nonuniform illumination and additive Gaussian noise. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  V. Vanderbilt,et al.  Plant Canopy Specular Reflectance Model , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Joseph A Shaw,et al.  Dual-field imaging polarimeter using liquid crystal variable retarders. , 2006, Applied optics.

[26]  P. Roberts,et al.  Backscattering target detection in a turbid medium by polarization discrimination. , 1999, Applied optics.

[27]  S. Jacquemoud,et al.  Leaf BRDF measurements and model for specular and diffuse components differentiation , 2005 .

[28]  John R. Schott,et al.  A polarized clutter measurement technique based on the governing equation for polarimetric remote sensing in the visible to near infrared , 2005, SPIE Defense + Commercial Sensing.

[29]  G. S. Phipps,et al.  Optimization of retardance for a complete Stokes polarimeter. , 2000, Optics letters.

[30]  John P. Kerekes,et al.  Spectral imaging system analytical model for subpixel object detection , 2002, IEEE Trans. Geosci. Remote. Sens..

[31]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[32]  David A. Landgrebe,et al.  Parameter trade-offs for imaging spectroscopy systems [remote sensing] , 1991, IEEE Trans. Geosci. Remote. Sens..

[33]  M. Hyde,et al.  A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces. , 2009, Optics express.

[34]  François Goudail,et al.  Optimization of the contrast in active Stokes images. , 2009, Optics letters.

[35]  Michael G. Gartley,et al.  Spectro-polarimetric BRDF determination of objects using in-scene calibration materials for polarimetric imagers , 2009, Optical Engineering + Applications.

[36]  B. Flusche An analysis of multimodal sensor fusion for target detection in an urban environment , 2011 .

[37]  S. R. Meier,et al.  Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces , 2002 .

[38]  Lingfei Meng,et al.  Adaptive target detection with a polarization-sensitive optical system. , 2011, Applied optics.

[39]  Florence Nadal,et al.  Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements , 1999, IEEE Trans. Geosci. Remote. Sens..

[40]  David W. Messinger,et al.  Anomaly detection of man-made objects using spectropolarimetric imagery , 2011, Defense + Commercial Sensing.

[41]  David A. Landgrebe,et al.  Parameter trade-offs for imaging spectroscopy systems , 1991 .

[42]  John R. Schott,et al.  Remote Sensing: The Image Chain Approach , 1996 .

[43]  L. B. Wolff Polarization camera for computer vision with a beam splitter , 1994 .

[44]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[45]  Ye Zhang,et al.  Modeling and Simulation of Polarimetric Hyperspectral Imaging Process , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[46]  E. Puttonen,et al.  Polarised bidirectional reflectance factor measurements from soil, stones, and snow , 2009 .

[47]  J Scott Tyo,et al.  Role of the null space of the DRM in the performance of modulated polarimeters. , 2012, Optics letters.

[48]  Daniel A Lemaster,et al.  Multichannel blind deconvolution of polarimetric imagery. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  F. Goudail,et al.  Target detection with a liquid-crystal-based passive Stokes polarimeter. , 2004, Applied optics.

[50]  J S Tyo,et al.  Target detection in optically scattering media by polarization-difference imaging. , 1996, Applied optics.

[51]  Milo W Hyde,et al.  Enhanced material classification using turbulence-degraded polarimetric imagery. , 2010, Optics letters.

[52]  J. S. Tyo,et al.  Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system , 1998 .

[53]  Philippe Réfrégier,et al.  Target segmentation in active polarimetric images by use of statistical active contours. , 2002, Applied optics.

[54]  J Scott Tyo,et al.  Review of passive imaging polarimetry for remote sensing applications. , 2006, Applied optics.

[55]  Maurice Herman,et al.  Polarization of light reflected by crop canopies , 1991 .

[56]  Stephen C. Cain,et al.  Material Classification of an Unknown Object Using Turbulence-Degraded Polarimetric Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Daniel A. LeMaster,et al.  Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data , 2011, Optical Engineering + Applications.

[58]  Christopher M. Persons,et al.  Performance predictions for micro-polarizer array imaging polarimeters , 2007, SPIE Optical Engineering + Applications.

[59]  J. Schott Fundamentals of Polarimetric Remote Sensing , 2009 .

[60]  Joseph A Shaw,et al.  Digital all-sky polarization imaging of partly cloudy skies. , 2008, Applied optics.

[61]  Charles D. Creusere,et al.  Pattern recognition for passive polarimetric data using nonparametric classifiers , 2005, SPIE Optics + Photonics.