Diffusion-based physical channel identification in molecular nanonetworks

Catala: El treball es una exploracio del canal de difusio molecular per nanoredes moleculars, en el qual s'identifica la resposta impulsional i en frequencia del canal, es comprova la seva linealitat i invariancia i s'extreuen les principals caracteristiques de comunicacio. S'avaluen diferents tecniques de modulacio.

[1]  Tadashi Nakano,et al.  An information theoretic model of molecular communication based on cellular signaling , 2007, 2007 2nd Bio-Inspired Models of Network, Information and Computing Systems.

[2]  Eduard Alarcon,et al.  Diffusion-based channel characterization in molecular nanonetworks , 2011, 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[3]  Eduard Alarcón,et al.  Physical channel characterization for medium-range nanonetworks using flagellated bacteria , 2011, Comput. Networks.

[4]  K. Hizanidis,et al.  Normal and Anomalous Diffusion: A Tutorial , 2008, 0805.0419.

[5]  Tatsuya Suda,et al.  A design of a molecular communication system for nanomachines using molecular motors , 2006, Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW'06).

[6]  R. Freitas Nanotechnology, nanomedicine and nanosurgery. , 2005, International journal of surgery.

[7]  Massimiliano Pierobon,et al.  A physical end-to-end model for molecular communication in nanonetworks , 2010, IEEE Journal on Selected Areas in Communications.

[8]  V. Méndez,et al.  Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities , 2010 .

[9]  Massimiliano Pierobon,et al.  Diffusion-Based Noise Analysis for Molecular Communication in Nanonetworks , 2011, IEEE Transactions on Signal Processing.

[10]  Ian F. Akyildiz,et al.  Molecular communication options for long range nanonetworks , 2009, Comput. Networks.

[11]  Su Whan Sung,et al.  Pseudo-random binary sequence design for finite impulse response identification , 2001 .

[12]  Özgür B. Akan,et al.  On Channel Capacity and Error Compensation in Molecular Communication , 2008, Trans. Comp. Sys. Biology.

[13]  Ian F. Akyildiz,et al.  The Internet of nano-things , 2010, IEEE Wireless Communications.

[14]  Benjamin A. Carreras,et al.  On the applicability of Fick's law to diffusion in inhomogeneous systems , 2005 .

[15]  Massimiliano Pierobon,et al.  Information capacity of diffusion-based molecular communication in nanonetworks , 2011, 2011 Proceedings IEEE INFOCOM.

[16]  Gabriel A Silva,et al.  Introduction to nanotechnology and its applications to medicine. , 2004, Surgical neurology.

[17]  Eduard Alarcón,et al.  Physical channel characterization for medium-range nanonetworks using catalytic nanomotors , 2010, Nano Commun. Networks.

[18]  Ian F. Akyildiz,et al.  A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors , 2010, IEEE Journal on Selected Areas in Communications.

[19]  Eduardo José Alarcón Cot,et al.  N3Sim: A simulation framework for diffusion-based molecular communication , 2011 .

[20]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[21]  Raviraj S. Adve,et al.  Molecular Communication Using Brownian Motion With Drift , 2010, IEEE Transactions on NanoBioscience.

[22]  T. Suda,et al.  Molecular communication for nanomachines using intercellular calcium signaling , 2005, 5th IEEE Conference on Nanotechnology, 2005..

[23]  Tuna Tugcu,et al.  Energy model for communication via diffusion in nanonetworks , 2010, Nano Commun. Networks.

[24]  Massimiliano Pierobon,et al.  Simulation-based evaluation of the diffusion-based physical channel in molecular nanonetworks , 2011, 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[25]  W. Bialek,et al.  Universal Statistical Behavior of Neural Spike Trains , 1998 .

[26]  S. Tristan,et al.  The Diffusion Equation A Multi-dimensional Tutorial c © , 2022 .

[27]  Tatsuya Suda,et al.  Exploratory Research on Molecular Communication between Nanomachines , 2005 .

[28]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[29]  Biman Bagchi,et al.  Anomalous diffusion of small particles in dense liquids , 1997 .

[30]  Özgür B. Akan,et al.  NanoNS: A nanoscale network simulator framework for molecular communications , 2010, Nano Commun. Networks.

[31]  Hendrik A. Kooijman A modification of the Stokes-Einstein equation for diffusivities in dilute binary mixtures , 2002 .

[32]  I. Akyildiz,et al.  Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[33]  H.A.B. Castro,et al.  A methodology for excitation systems identification , 2005, 2005 International Conference on Industrial Electronics and Control Applications.

[34]  Özgür B. Akan,et al.  Deterministic capacity of information flow in molecular nanonetworks , 2010, Nano Commun. Networks.

[35]  Kwan S. Kwok,et al.  Moletronics: future electronics , 2002 .

[36]  Raviraj S. Adve,et al.  A Framework to Study the Molecular Communication System , 2009, 2009 Proceedings of 18th International Conference on Computer Communications and Networks.

[37]  Lars Fredriksson,et al.  Normal and anomalous diffusion , 2010 .

[38]  Ian F. Akyildiz,et al.  Electromagnetic wireless nanosensor networks , 2010, Nano Commun. Networks.

[39]  Ian F. Akyildiz,et al.  Nanonetworks: A new communication paradigm , 2008, Comput. Networks.

[40]  Massimiliano Pierobon,et al.  Exploring the Physical Channel of Diffusion-Based Molecular Communication by Simulation , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.