Influence of oxide matrix on electron transport in (FeCoZr)x(Al2O3)1-x nanocomposite films

Abstract Electron transport in (Fe 0.45 Co 0.45 Zr 0.10 ) x (Al 2 O 3 ) 1-x granular nanocomposites (NCs) produced by the ion-beam sputtering of compound target was studied in the temperature range of 2–300 K. Conductivity of the films synthesized in the inert (Ar) atmosphere is determined below percolation threshold by the thermally activated electron tunneling over metallic granules at low temperatures and replaced by the Mott variable range hopping (VRH) with increasing temperature. Introduction of oxygen to the sputtering chamber suppresses VRH leading to retention of the thermally activated tunneling in the whole studied temperature range for the metallic phase atomic concentrations up to х =  0.62. The model of thermally activated tunneling over metallic granules gives an excellent agreement with experimental data when alumina matrix permittivity is considered as increasing with concentration of the metallic phase fraction in the films, which is due to increase in number of localized electronic states. The established influence of the sputtering atmosphere on the electron transport in nanocomposites is explained by reduction of concentration of the defects in matrix when oxygen is added to the sputtering atmosphere.

[1]  J. Przewoźnik,et al.  Effect of oxide shells on the magnetic and magnetotransport characteristics of oxidized FeCoZr nanogranules in Al2O3 , 2011 .

[2]  F. C. Fonseca,et al.  Impedance spectroscopy analysis of percolation in (yttria-stabilized zirconia)-yttria ceramic composites , 2004 .

[3]  A. B. Pakhomov,et al.  Numerical study of conductance distribution in granular metal films , 2000 .

[4]  誠司 三谷,et al.  Fe 基金属-酸化物グラニュラー構造薄膜の巨大磁気抵抗と Hall 効果 , 1997 .

[5]  V. Gritsenko,et al.  Electronic structure of bulk and defect α- and γ-Al2O3 , 2009 .

[6]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[7]  Volodymyr Ivashchenko,et al.  First-principles quantum molecular dynamics study of TixZr1−xN(111)/SiNy heterostructures and comparison with experimental results , 2014, Science and technology of advanced materials.

[8]  Kevin P. Homewood,et al.  Magnetoresistance in FeCoZr–Al2O3 nanocomposite films containing ‘metal core–oxide shell’ nanogranules , 2011 .

[9]  B. Bonello,et al.  Elastic properties of ultrathin permalloy/alumina multilayer films using picosecond ultrasonics and brillouin light scattering , 2004 .

[10]  S. Ohnuma,et al.  Tunnel-type GMR in metal-nonmetal granular alloy thin films , 1995 .

[11]  Y. Kalinin,et al.  Isotropic positive magnetoresistance in Co-Al2On nanocomposites , 2007 .

[12]  Hidehiro Onodera,et al.  MICROSTRUCTURE OF CO-AL-O GRANULAR THIN FILMS , 1997 .

[13]  A. B. Pakhomov,et al.  Giant Hall effect in superparamagnetic granular films , 2003 .

[14]  S. Honda,et al.  Tunneling giant magnetoresistance in heterogeneous F e − S i O 2 granular films , 1997 .

[15]  X. Batlle,et al.  Universality of the electrical transport in granular metals , 2016, Scientific Reports.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Bruce D. Evans,et al.  Optical properties of lattice defects in α-Al2O3 , 1994 .

[18]  J. Huang,et al.  Complex capacitance spectroscopy as a probe for oxidation process of AlOx-based magnetic tunnel junctions , 2004 .

[19]  N. A. Poklonski,et al.  Electrostatic models of insulator-metal and metal-insulator concentration phase transitions in Ge and Si crystals doped by hydrogen-like impurities , 2004 .

[20]  Mark Lee,et al.  Coulomb gap in a doped semiconductor near the metal-insulator transition: Tunneling experiment and scaling ansatz , 1999, cond-mat/9902169.

[21]  P. Zhukowski,et al.  Magnetic properties of nanocomposites (CoFeZr)x(Al2O3)1-x , 2010 .

[22]  A. Yoshida,et al.  The effects of annealing on mott's parameters for hopping conduction in amorphous Ge , 1977 .

[23]  Yi Liu,et al.  Nanocomposite CoPt:C fi lms for extremely high- density recording , 1999 .

[24]  P. Sheng,et al.  Hopping Conductivity in Granular Metals , 1973 .

[25]  Magnetooptical study of granular silicon oxide films with embedded CoNbTa ferromagnetic particles , 2003 .

[26]  Marek Opielak,et al.  Ferromagnetic resonance spectroscopy of CoFeZr-Al2O3 granular films containing “FeCo core – oxide shell” nanoparticles , 2017 .

[27]  Chan‐Jin Park,et al.  Oxygen deficiency defects in amorphous Al2O3 , 2010 .

[28]  O. Ivasishin,et al.  Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings , 2016 .

[29]  E. Meĭlikhov Thermally activated conductivity and current-voltage characteristic of dielectric phase in granular metals , 1999 .

[30]  E. Coy,et al.  Effect of ion implantation on the physical and mechanical properties of Ti-Si-N multifunctional coatings for biomedical applications , 2016 .

[31]  K. Yakushiji,et al.  Composition dependence of particle size distribution and giant magnetoresistance in Co–Al–O granular films , 2000 .

[32]  L. Moberly,et al.  The low-frequency, low-temperature dielectric behavior of n-type germanium below the insulator-metal transition , 1980 .

[33]  M. Stordeur,et al.  Thermal conductivity of thin amorphous alumina films , 1993 .

[34]  A. K. Fedotov,et al.  Influence of sputtering atmosphere on hopping conductance in granular nanocomposite (FeCoZr)x(Al2O3)1−x films , 2014 .

[35]  B. Schmidt,et al.  Iron nanoparticles in amorphous SiO2: X-ray emission and absorption spectra , 2005 .

[36]  Granular electronic systems , 2006, cond-mat/0603522.