Global Mapping of Transposon Location

Transposable genetic elements are ubiquitous, yet their presence or absence at any given position within a genome can vary between individual cells, tissues, or strains. Transposable elements have profound impacts on host genomes by altering gene expression, assisting in genomic rearrangements, causing insertional mutations, and serving as sources of phenotypic variation. Characterizing a genome's full complement of transposons requires whole genome sequencing, precluding simple studies of the impact of transposition on interindividual variation. Here, we describe a global mapping approach for identifying transposon locations in any genome, using a combination of transposon-specific DNA extraction and microarray-based comparative hybridization analysis. We use this approach to map the repertoire of endogenous transposons in different laboratory strains of Saccharomyces cerevisiae and demonstrate that transposons are a source of extensive genomic variation. We also apply this method to mapping bacterial transposon insertion sites in a yeast genomic library. This unique whole genome view of transposon location will facilitate our exploration of transposon dynamics, as well as defining bases for individual differences and adaptive potential.

[1]  H. Feldmann,et al.  tRNA genes and retroelements in the yeast genome. , 1998, Nucleic acids research.

[2]  A. Gabriel,et al.  Reciprocal translocations in Saccharomyces cerevisiae formed by nonhomologous end joining. , 2004, Genetics.

[3]  Dan Graur,et al.  Alu-containing exons are alternatively spliced. , 2002, Genome research.

[4]  C. Newlon,et al.  A physical comparison of chromosome III in six strains of Saccharomyces cerevisiae , 1994, Yeast.

[5]  Michael R. Seringhaus,et al.  Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon. , 2004, Genome research.

[6]  C. Newlon,et al.  Polymorphisms on the right arm of yeast chromosome III associated with Ty transposition and recombination events. , 1987, Nucleic acids research.

[7]  V. Blanc,et al.  Evolution in Saccharomyces cerevisiae: identification of mutations increasing fitness in laboratory populations. , 2003, Genetics.

[8]  J. Haber,et al.  Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks , 1996, Nature.

[9]  F. Bushman Targeting Survival Integration Site Selection by Retroviruses and LTR-Retrotransposons , 2003, Cell.

[10]  Rachel B. Brem,et al.  Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors , 2003, Nature Genetics.

[11]  S M Kane,et al.  Carbohydrate Metabolism During Ascospore Development in Yeast , 1974, Journal of bacteriology.

[12]  T. Petes,et al.  Chromosomal Translocations in Yeast Induced by Low Levels of DNA Polymerase A Model for Chromosome Fragile Sites , 2005, Cell.

[13]  Stanley Falkow,et al.  Global Transposon Mutagenesis and Essential Gene Analysis of Helicobacter pylori , 2004, Journal of bacteriology.

[14]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[15]  Jennifer L. Groh,et al.  A Method Adapting Microarray Technology for Signature-Tagged Mutagenesis of Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 in Anaerobic Sediment Survival Experiments , 2005, Applied and Environmental Microbiology.

[16]  H. Feldmann,et al.  Ty4, a novel low-copy number element in Saccharomyces cerevisiae: one copy is located in a cluster of Ty elements and tRNA genes. , 1989, Nucleic acids research.

[17]  R. Rothstein One-step gene disruption in yeast. , 1983, Methods in enzymology.

[18]  P. Ross-Macdonald,et al.  A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[19]  I. K. Jordan,et al.  Phylogenetic perspective reveals abundant Ty1/Ty2 hybrid elements in the Saccharomyces cerevisiae genome. , 1999, Molecular biology and evolution.

[20]  D. Voytas,et al.  Yeast retrotransposons and tRNAs. , 1993, Trends in genetics : TIG.

[21]  Jef D. Boeke,et al.  Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes , 2004, Nature.

[22]  I. K. Jordan,et al.  Evidence for the Role of Recombination in the Regulatory Evolution of Saccharomyces cerevisiae Ty Elements , 1998, Journal of Molecular Evolution.

[23]  Daniel R. Richards,et al.  Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. , 2003, Genetics.

[24]  D. Voytas,et al.  The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. , 1996, Genes & development.

[25]  F. Winston,et al.  Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene , 2004, Molecular and General Genetics MGG.

[26]  X. Yu,et al.  Patching broken chromosomes with extranuclear cellular DNA. , 1999, Molecular cell.

[27]  Albert-László Barabási,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002 .

[28]  Maitreya J. Dunham,et al.  Genome-Wide Detection of Polymorphisms at Nucleotide Resolution with a Single DNA Microarray , 2006, Science.

[29]  G. Liti,et al.  Inferences of evolutionary relationships from a population survey of LTR‐retrotransposons and telomeric‐associated sequences in the Saccharomyces sensu stricto complex , 2005, Yeast.

[30]  W. Engels P elements in Drosophila. , 1996, Current topics in microbiology and immunology.

[31]  A. Hinnen,et al.  Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach , 1999, Molecular and General Genetics MGG.

[32]  G. Fink,et al.  Laboratory course manual for methods in yeast genetics , 1986 .

[33]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[34]  Lisa Z. Scheifele,et al.  Transposon insertion site profiling chip (TIP-chip) , 2006, Proceedings of the National Academy of Sciences.

[35]  Gábor Balázsi,et al.  Genome-scale identification of conditionally essential genes in E. coli by DNA microarrays. , 2004, Biochemical and biophysical research communications.

[36]  L. Fulton,et al.  Finding Functional Features in Saccharomyces Genomes by Phylogenetic Footprinting , 2003, Science.

[37]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[38]  B. Dujon,et al.  The complete DNA sequence of yeast chromosome III , 1992, Nature.

[39]  Michael Krawczak,et al.  Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination‐associated motifs , 2003, Human mutation.

[40]  S. Kelly,et al.  Cyclic variations in sensitivity to X-irradiation during meiosis in Saccharomyces cerevisiae , 2004, Molecular and General Genetics MGG.

[41]  Rodney Rothstein,et al.  Elevated recombination rates in transcriptionally active DNA , 1989, Cell.

[42]  P. Ross-Macdonald,et al.  Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. , 1994, Genes & development.

[43]  D. Voytas,et al.  Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.

[44]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[45]  Fred H. Gage,et al.  Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition , 2005, Nature.

[46]  B. Cormack,et al.  Tn7-based genome-wide random insertional mutagenesis of Candida glabrata. , 2003, Genome research.

[47]  S. Oliver,et al.  Chromosomal evolution in Saccharomyces , 2000, Nature.

[48]  J. Bennetzen,et al.  Transposable element contributions to plant gene and genome evolution , 2004, Plant Molecular Biology.

[49]  David Botstein,et al.  Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Squire,et al.  The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors , 2002, Genes, chromosomes & cancer.

[51]  J. Adams,et al.  The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae , 2004, Genetica.

[52]  A. Gabriel,et al.  Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks , 1996, Nature.

[53]  J. Powell,et al.  LINE‐I element insertion at the t(11;22) translocation breakpoint of a desmoplastic small round cell tumor , 1997, Genes, chromosomes & cancer.

[54]  G. Karpen,et al.  Genetics of P-element transposition into Drosophila melanogaster centric heterochromatin. , 2003, Genetics.

[55]  N. Fedoroff,et al.  Screening insertion libraries for mutations in many genes simultaneously using DNA microarrays , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  H. Kazazian,et al.  Mobile elements and disease. , 1998, Current opinion in genetics & development.

[57]  Bradley P. Coe,et al.  A tiling resolution DNA microarray with complete coverage of the human genome , 2004, Nature Genetics.

[58]  Stanley Falkow,et al.  Microarray-Based Detection of Salmonella enterica Serovar Typhimurium Transposon Mutants That Cannot Survive in Macrophages and Mice , 2005, Infection and Immunity.

[59]  J. Adams,et al.  Fitness effects of Ty transposition in Saccharomyces cerevisiae. , 1992, Genetics.