On (n,n-1) Punctured Convolutional Codes and Their Trellis Modules

It is known that an (n,n-1) non catastrophic antipodal punctured convolutional encoder of memory m is minimal. That is, the corresponding code cannot be produced by an encoder of smaller memory size. In this letter it is shown that the trellis module of a code produced by an (n,n-1) non catastrophic punctured convolutional encoder is optimum, if and only if the encoder is antipodal.

[1]  Richard Demo Souza,et al.  Generalized punctured convolutional codes , 2005, IEEE Communications Letters.

[2]  Conor O'Donoghue,et al.  Catastrophicity Test for Time-Varying Convolutional Encoders , 1999, IMACC.

[3]  Kjell Jørgen Hole Rate k/(k + 1) punctured convolutional encoders , 1991, IEEE Trans. Inf. Theory.

[4]  Robert J. McEliece,et al.  On the BCJR trellis for linear block codes , 1996, IEEE Trans. Inf. Theory.

[5]  J. Bibb Cain,et al.  Punctured convolutional codes of rate (n-1)/n and simplified maximum likelihood decoding (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[6]  R. McEliece,et al.  The trellis complexity of convolutional codes , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[7]  Mao-Chao Lin,et al.  On (n, n-1) convolutional codes with low trellis complexity , 2002, IEEE Trans. Commun..

[8]  D. Graupe,et al.  Punctured Convolutional Codes of Rate (n - 1)/n and Simplified Maximum Likelihood Decoding , 1979 .

[9]  Zhongding Lei,et al.  IEEE 802.22: The first cognitive radio wireless regional area network standard , 2009, IEEE Communications Magazine.

[10]  Pil Joong Lee Constructions of rate (n-1)/n punctured convolutional codes with minimum required SNR criterion , 1988, IEEE Trans. Commun..

[11]  Bartolomeu F. Uchôa Filho,et al.  Minimal Trellis Modules and Equivalent Convolutional Codes , 2006, IEEE Transactions on Information Theory.

[12]  M. Mooser Some periodic convolutional codes better than any fixed code , 1983, IEEE Trans. Inf. Theory.

[13]  Kjell Jørgen Hole Punctured convolutional codes for the 1-D partial-response channel , 1991, IEEE Trans. Inf. Theory.

[14]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[15]  Irina E. Bocharova,et al.  Rational rate punctured convolutional codes for soft-decision Viterbi decoding , 1997, IEEE Trans. Inf. Theory.

[16]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.