Radionuclide Source Term for Irradiated Fuel from Prototype, Research and Education Reactors, for Waste Forms with Negligible Heat Generation and for Uranium Tails (KIT Scientific Reports ; 7635)

Radionuclide source terms are derived for different disposal options of a potential final repository in the salt dome Gorleben. The geochemical conditions are analyzed under the precondition that NaCl, MgCl2- or CaCl2-rich solutions are present. Kinetic and thermodynamic mobilization/retention and the influence of temperatures are discussed. Upper limit concentrations for the radionuclides Am, Th, U, Np, Pu, Tc, Zr and rare earth elements are derived for the simplified scenarios.

[1]  Tiziana Missana,et al.  Mechanisms of cesium sorption onto magnetite , 2006 .

[2]  F. P. Glasser,et al.  Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding , 1998 .

[3]  C. Hennig,et al.  Sorption of Th(IV) onto iron corrosion products: EXAFS study. , 2009, Environmental science & technology.

[4]  É. Simoni,et al.  Speciation of uranium(VI) at the solid/solution interface: sorption modeling on zirconium silicate and zirconium oxide , 2003 .

[5]  Sorption Mechanism of Carbon-14 by Hardened Cement Paste , 1995 .

[6]  S. Nagasaki,et al.  Reduction rate of neptunium(V) in heterogeneous solution with magnetite , 2004 .

[7]  A. Uğur,et al.  Sorption kinetics of cesium on ZrO2 and ZrO2-SiO2-TiO2 microspheres , 2010 .

[8]  H. Tel,et al.  Sorption studies of strontium on hydrous zirconium dioxide , 2006 .

[9]  G. C. Allen,et al.  Reduction of U(VI) to U(IV) on the surface of magnetite , 2005 .

[10]  P. Larsson,et al.  Long-Term Predictions of the Concentration of a-isosaccharinic Acid in Cement Pore Water , 2008 .

[11]  G. C. Allen,et al.  Aqueous uptake of uranium onto pyrite surfaces; reactivity of fresh versus weathered material , 2007 .

[12]  R. Narayan Swamy,et al.  Stability of Friedel's salt in carbonated concrete structural elements , 1996 .

[13]  S. Chatterji Transportation of ions through cement based materials. Part 2. Adaptation of the fundamental equations and relevant comments , 1994 .

[14]  M. Denecke,et al.  EXAFS study of aqueous Zr(IV) and Th(IV) complexes in alkaline CaCl(2) solutions: Ca(3)[Zr(OH)(6)](4+) and Ca(4)[Th(OH)(8)](4+). , 2007, Inorganic chemistry.

[15]  R. Vreeland,et al.  Distribution and diversity of halophilic bacteria in a subsurface salt formation , 1998, Extremophiles.

[16]  T. Fanghänel,et al.  Solubility of tetravalent actinides in alkaline CaCl2 solutions and formation of Ca4[An(OH)8]4+ complexes: A study of Np(IV) and Pu(IV) under reducing conditions and the systematic trend in the An(IV) series , 2010 .

[17]  R. Müller,et al.  Sorption and Reduction of Uranium(VI) on Iron Corrosion Products under Reducing Saline Conditions , 1996 .

[18]  A. Francis,et al.  Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report , 2011 .

[19]  J. A. Ritter,et al.  Adsorption of Cesium, Strontium, and Cobalt Ions on Magnetite and a Magnetite−Silica Composite , 2001 .

[20]  Marmier,et al.  Surface Complexation Modeling of Yb(III), Ni(II), and Cs(I) Sorption on Magnetite. , 1999, Journal of colloid and interface science.

[21]  E. Reardon,et al.  Carbon-14 behaviour in a cement-dominated environment: Implications for spent candu resin waste disposal , 1994 .

[22]  T. Fanghänel,et al.  Solubility of plutonium in MgCl2 and CaCl2 solutions in contact with metallic iron , 2009 .

[23]  Ramesh Dayal,et al.  Cement-based engineered barriers for carbon-14 isolation , 1992 .

[24]  E. Buck,et al.  Heterogeneous reduction of PuO₂ with Fe(II): importance of the Fe(III) reaction product. , 2011, Environmental science & technology.

[25]  Arokiasamy J. Francis,et al.  Microbial gas generation under expected Waste Isolation Pilot Plant repository conditions , 1997 .

[26]  C. Andrade,et al.  Determination of chloride diffusivity through partially saturated Portland cement concrete by a simplified procedure , 2011 .

[27]  J. Pablo,et al.  A spectroscopic study of uranium(VI) interaction with magnetite , 2007 .

[28]  E. Smailos Corrosion of high-level waste packaging materials in disposal relevant brines , 1993 .

[29]  R. Csencsits,et al.  Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles. , 2003, Environmental science & technology.

[30]  C. Cau Dit Coumes,et al.  Cementation of a low-level radioactive waste of complex chemistry , 2003 .

[31]  A. Roßberg,et al.  Oxidation state and local structure of plutonium reacted with magnetite, mackinawite, and chukanovite. , 2011, Environmental science & technology.

[32]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C , 1984 .

[33]  L. V. Van Loon,et al.  Degradation of cellulose under alkaline conditions: new insights from a 12 years degradation study. , 2008, Environmental science & technology.

[34]  M. Rovira,et al.  Thorium sorption onto magnetite and ferrihydrite in acidic conditions , 2009 .

[35]  J. de Pablo,et al.  Interaction of uranium with in situ anoxically generated magnetite on steel. , 2007, Journal of hazardous materials.

[36]  Immobilization of selenate by iron in aqueous solution under anoxic conditions and the influence of uranyl , 2009 .

[37]  T. Fanghänel,et al.  Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes , 2008 .