An Avron rule for fragments of R-mingle
暂无分享,去创建一个
[1] Alexandra Silva,et al. Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..
[2] Vladimir V. Rybakov,et al. A criterion for admissibility of rules in the model system S4 and the intuitionistic logic , 1984 .
[3] Vladimir V. Rybakov,et al. Admissibility of Logical Inference Rules , 2011 .
[4] Silvio Ghilardi,et al. Best Solving Modal Equations , 2000, Ann. Pure Appl. Log..
[5] Paul Roziere. Regles admissibles en calcul propositionnel intuitionniste , 1992 .
[6] Tadeusz Prucnal. On the structural completeness of some pure implicational propositional calculi , 1972 .
[7] Petr Cintula,et al. Structural Completeness in Fuzzy Logics , 2009, Notre Dame J. Formal Log..
[8] Wolfgang Rautenberg,et al. 2-Element matrices , 1981 .
[9] Robert K. Meyer,et al. A Structurally Complete Fragment of Relevant Logic , 1992, Notre Dame J. Formal Log..
[10] Arnon Avron,et al. A constructive analysis of RM , 1987, Journal of Symbolic Logic.
[11] James G. Raftery,et al. Structural Completeness in Substructural Logics , 2008, Log. J. IGPL.
[12] Arnon Avron,et al. On an implication connective of RM , 1986, Notre Dame J. Formal Log..
[13] Emil Jerábek,et al. Bases of Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..
[14] Vladimir V. Rybakov,et al. Linear Temporal Logic LTL: Basis for Admissible Rules , 2011, J. Log. Comput..
[15] James G. Raftery,et al. Representable idempotent commutative residuated lattices , 2007 .
[16] J. Raftery,et al. Positive Sugihara monoids , 2007 .
[17] George Metcalfe,et al. Admissibility via natural dualities , 2015 .
[18] Petr Cintula,et al. Admissible rules in the implication-negation fragment of intuitionistic logic , 2010, Ann. Pure Appl. Log..
[19] Emil Jerábek. Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..
[20] Rosalie Iemhoff,et al. Proof theory for admissible rules , 2009, Ann. Pure Appl. Log..
[21] Arnon Avron,et al. Multiplicative Conjunction as an Extensional Conjunction , 1997, Log. J. IGPL.
[22] Arnon Avron. Implicational F-Structures and Implicational Relevance Logics , 2000, J. Symb. Log..
[23] Emil Jerábek,et al. Admissible Rules of Modal Logics , 2005, J. Log. Comput..
[24] James G. Raftery,et al. Fragments of R-Mingle , 2004, Stud Logica.
[25] Tadeusz Prucnal. Proof of structural completeness of a certain class of implicative propositional calculi , 1973 .
[26] George Metcalfe,et al. Admissibility in De Morgan algebras , 2012, Soft Comput..
[27] Silvio Ghilardi,et al. Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.
[28] George Metcalfe,et al. Admissibility in Finitely Generated Quasivarieties , 2013, Log. Methods Comput. Sci..
[29] Rosalie Iemhoff,et al. On the admissible rules of intuitionistic propositional logic , 2001, Journal of Symbolic Logic.
[30] Vladimir V. Rybakov,et al. Unification in linear temporal logic LTL , 2011, Ann. Pure Appl. Log..
[31] Rosalie Iemhoff,et al. Intermediate Logics and Visser's Rules , 2005, Notre Dame J. Formal Log..