An Avron rule for fragments of R-mingle

Axiomatic bases of admissible rules are obtained for fragments of the substructural logic R-mingle. In particular, it is shown that a ‘modus-ponens-like’ rule introduced by Arnon Avron forms a basis for the admissible rules of its implication and implication–fusion fragments, while a basis for the admissible rules of the full multiplicative fragment requires an additional countably infinite set of rules. Indeed, this latter case provides an example of a three-valued logic with a finitely axiomatizable consequence relation that has no finite basis for its admissible rules.

[1]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[2]  Vladimir V. Rybakov,et al.  A criterion for admissibility of rules in the model system S4 and the intuitionistic logic , 1984 .

[3]  Vladimir V. Rybakov,et al.  Admissibility of Logical Inference Rules , 2011 .

[4]  Silvio Ghilardi,et al.  Best Solving Modal Equations , 2000, Ann. Pure Appl. Log..

[5]  Paul Roziere Regles admissibles en calcul propositionnel intuitionniste , 1992 .

[6]  Tadeusz Prucnal On the structural completeness of some pure implicational propositional calculi , 1972 .

[7]  Petr Cintula,et al.  Structural Completeness in Fuzzy Logics , 2009, Notre Dame J. Formal Log..

[8]  Wolfgang Rautenberg,et al.  2-Element matrices , 1981 .

[9]  Robert K. Meyer,et al.  A Structurally Complete Fragment of Relevant Logic , 1992, Notre Dame J. Formal Log..

[10]  Arnon Avron,et al.  A constructive analysis of RM , 1987, Journal of Symbolic Logic.

[11]  James G. Raftery,et al.  Structural Completeness in Substructural Logics , 2008, Log. J. IGPL.

[12]  Arnon Avron,et al.  On an implication connective of RM , 1986, Notre Dame J. Formal Log..

[13]  Emil Jerábek,et al.  Bases of Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[14]  Vladimir V. Rybakov,et al.  Linear Temporal Logic LTL: Basis for Admissible Rules , 2011, J. Log. Comput..

[15]  James G. Raftery,et al.  Representable idempotent commutative residuated lattices , 2007 .

[16]  J. Raftery,et al.  Positive Sugihara monoids , 2007 .

[17]  George Metcalfe,et al.  Admissibility via natural dualities , 2015 .

[18]  Petr Cintula,et al.  Admissible rules in the implication-negation fragment of intuitionistic logic , 2010, Ann. Pure Appl. Log..

[19]  Emil Jerábek Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[20]  Rosalie Iemhoff,et al.  Proof theory for admissible rules , 2009, Ann. Pure Appl. Log..

[21]  Arnon Avron,et al.  Multiplicative Conjunction as an Extensional Conjunction , 1997, Log. J. IGPL.

[22]  Arnon Avron Implicational F-Structures and Implicational Relevance Logics , 2000, J. Symb. Log..

[23]  Emil Jerábek,et al.  Admissible Rules of Modal Logics , 2005, J. Log. Comput..

[24]  James G. Raftery,et al.  Fragments of R-Mingle , 2004, Stud Logica.

[25]  Tadeusz Prucnal Proof of structural completeness of a certain class of implicative propositional calculi , 1973 .

[26]  George Metcalfe,et al.  Admissibility in De Morgan algebras , 2012, Soft Comput..

[27]  Silvio Ghilardi,et al.  Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.

[28]  George Metcalfe,et al.  Admissibility in Finitely Generated Quasivarieties , 2013, Log. Methods Comput. Sci..

[29]  Rosalie Iemhoff,et al.  On the admissible rules of intuitionistic propositional logic , 2001, Journal of Symbolic Logic.

[30]  Vladimir V. Rybakov,et al.  Unification in linear temporal logic LTL , 2011, Ann. Pure Appl. Log..

[31]  Rosalie Iemhoff,et al.  Intermediate Logics and Visser's Rules , 2005, Notre Dame J. Formal Log..