Chromatophore Genome Sequence of Paulinella Sheds Light on Acquisition of Photosynthesis by Eukaryotes

BACKGROUND It is commonly accepted that a single primary endosymbiosis gave rise to the photosynthetic organelles of plants, the plastids. Recently, we presented evidence that photosynthetic inclusions, termed "chromatophores," present in the filose thecamoeba Paulinella chromatophora originated from an independent, more recent primary endosymbiotic event. To clarify metabolic capabilities of the chromatophore and its state of integration into the host, we present here the complete genome sequence of the chromatophore. RESULTS Our data reveal a fundamental reduction of the chromatophore genome. The single, circular chromosome of 1.02 Mb encodes 867 protein-coding genes and is, therewith, the smallest cyanobacterial genome reported to date. Compared to Synechococcus WH5701, a free-living relative of the chromatophore, only 26% of the genes were retained. Eleven putative pseudogenes were identified, indicating that reductive genome evolution is ongoing. Although the chromatophore genome contains a complete set of photosynthesis genes, it lacks not only genes thought to be dispensable for an intracellular lifestyle but also genes of essential pathways for amino acid and cofactor synthesis. CONCLUSIONS Our data characterize the chromatophore as a photosynthetic entity that is absolutely dependent on its host for growth and survival. Thus, the chromatophores of P. chromatophora are the only known cyanobacterial descendants besides plastids with a significantly reduced genome that confer photosynthesis to their eukaryotic host. Their comparison with plastids and bacterial endosymbionts of invertebrates sheds light on early steps of the integration of a photosynthetic prokaryote into a eukaryotic cell.

[1]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[2]  Mark Borodovsky,et al.  GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses , 2005, Nucleic Acids Res..

[3]  S. Miyagishima,et al.  Identification of cyanobacterial cell division genes by comparative and mutational analyses , 2005, Molecular microbiology.

[4]  Manesh Shah,et al.  Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation , 2003, Nature.

[5]  Paul W. Johnson,et al.  Ultrastructure and Ecology of Calycomonas ovalis Wulff, 1919, (Chrysophyceae) and Its Redescription as a Testate Rhizopod, Paulinella ovalis N. Comb. (Filosea: Euglyphina)1 , 1988 .

[6]  Naiara Rodríguez-Ezpeleta,et al.  Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes , 2005, Current Biology.

[7]  M. Melkonian,et al.  Molecular Evolutionary Analyses of Nuclear‐Encoded Small Subunit Ribosomal RNA Identify an Independent Rhizopod Lineage Containing the Euglyphina and the Chlorarachniophyta , 1995, The Journal of eukaryotic microbiology.

[8]  W. Doolittle You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. , 1998, Trends in genetics : TIG.

[9]  J. Andersson,et al.  Lateral gene transfer in eukaryotes , 2005, Cellular and Molecular Life Sciences CMLS.

[10]  F. Leganés,et al.  Wide variation in the cyanobacterial complement of presumptive penicillin-binding proteins , 2005, Archives of Microbiology.

[11]  M. Hattori,et al.  Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.

[12]  J. Palmer,et al.  THE SYMBIOTIC BIRTH AND SPREAD OF PLASTIDS: HOW MANY TIMES AND WHODUNIT? , 2003 .

[13]  Patricia J. Johnson,et al.  Ancient Invasions: From Endosymbionts to Organelles , 2004, Science.

[14]  J. Wernegreen,et al.  Genome evolution in bacterial endosymbionts of insects , 2002, Nature Reviews Genetics.

[15]  S. Richards,et al.  Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes , 2007, Science.

[16]  T Gojobori,et al.  Large-scale search for genes on which positive selection may operate. , 1996, Molecular biology and evolution.

[17]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[18]  Hitoshi Nakamoto,et al.  Targeted inactivation of the gene psaK encoding a subunit of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. , 1999, Plant & cell physiology.

[19]  B. Roe Shotgun library construction for DNA sequencing. , 2004, Methods in molecular biology.

[20]  J. Nunnari,et al.  The Division of Endosymbiotic Organelles , 2003, Science.

[21]  C. Fookes,et al.  Biosynthesis of the natural porphyrins: experiments on the ring-closure steps and with the hydroxy-analogue of porphobilinogen , 1979 .

[22]  K. Philippar,et al.  Solute channels of the outer membrane: from bacteria to chloroplasts , 2007, Biological chemistry.

[23]  M. Melkonian,et al.  The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like γ-proteobacterium , 2007, BMC Evolutionary Biology.

[24]  Jodi Maple,et al.  Plastid division: evolution, mechanism and complexity. , 2006, Annals of botany.

[25]  Ling V. Sun,et al.  Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements , 2004, PLoS biology.

[26]  Geoffrey I. McFadden,et al.  Use of Hepes buffer for microalgal culture media and fixation for electron microscopy , 1986 .

[27]  F. Delsuc,et al.  The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Penard Notes sur quelques Sarcodinés. 1re partie , 1905 .

[29]  O. Anderson,et al.  A Description of Paulinella indentata N. Sp. (Filosea: Euglyphina) from Subtidal Coastal Benthic Sediments , 1996 .

[30]  W. Martin,et al.  The difference between organelles and endosymbionts , 2006, Current Biology.

[31]  A. Weber,et al.  Host origin of plastid solute transporters in the first photosynthetic eukaryotes , 2007, Genome Biology.

[32]  M. A. De la Rosa,et al.  The Efficient Functioning of Photosynthesis and Respiration in Synechocystis sp. PCC 6803 Strictly Requires the Presence of either Cytochrome c6 or Plastocyanin* , 2004, Journal of Biological Chemistry.

[33]  C. Bergounioux,et al.  An Arabidopsis Homolog of the Bacterial Cell Division Inhibitor SulA Is Involved in Plastid Division , 2004, The Plant Cell Online.

[34]  B. Kremer,et al.  Function of cyanelles in the thecamoeba Paulinella chromatophora , 1979, Naturwissenschaften.

[35]  T. Kaneko,et al.  Physical and gene maps of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome , 1996, Plant Molecular Biology.

[36]  Thomas Dandekar,et al.  Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts , 2004, Microbiology and Molecular Biology Reviews.

[37]  D. Bhattacharya,et al.  Response to Theissen and Martin , 2006, Current Biology.

[38]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[39]  L. Kies Elektronenmikroskopische Untersuchungen anPaulinella chromatophora Lauterborn, einer Thekamöbe mit blau-grünen Endosymbionten (Cyanellen) , 1974, Protoplasma.

[40]  Jürgen Gadau,et al.  The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  P. Mackiewicz,et al.  The intracellular cyanobacteria of Paulinella chromatophora: endosymbionts or organelles? , 2007, Trends in microbiology.

[42]  P. Keeling,et al.  Diversity and evolutionary history of plastids and their hosts. , 2004, American journal of botany.

[43]  M. Melkonian,et al.  Minimal plastid genome evolution in the Paulinella endosymbiont , 2006, Current Biology.

[44]  Frank Sargent,et al.  Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. , 2005, Current opinion in microbiology.

[45]  O. Koksharova,et al.  A Novel Gene That Bears a DnaJ Motif Influences Cyanobacterial Cell Division , 2002, Journal of bacteriology.

[46]  Michael Melkonian,et al.  A plastid in the making: evidence for a second primary endosymbiosis. , 2005, Protist.

[47]  L. Kies [Electron microscopical investigations on Paulinella chromatophora Lauterborn, a thecamoeba containing blue-green endosymbionts (Cyanelles) (author's transl)]. , 1974, Protoplasma.

[48]  W B Snyder,et al.  Cloning and characterization of the psaE gene of the cyanobacterium Synechococcus sp. PCC 7002: characterization of a psaE mutant and overproduction of the protein in Escherichia coli , 1993, Molecular microbiology.

[49]  L. Rothfield,et al.  Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery , 2000, Molecular microbiology.

[50]  Shigeru Shimamura,et al.  Reduced Genome of the Thioautotrophic Intracellular Symbiont in a Deep-Sea Clam, Calyptogena okutanii , 2007, Current Biology.

[51]  M. Melkonian,et al.  Phylogenetic Relationships among the Cryptophyta: Analyses of Nuclear-Encoded SSU rRNA Sequences Support the Monophyly of Extant Plastid-Containing Lineages. , 1998, Protist.

[52]  A. Latorre,et al.  The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola. , 2004, Molecular biology and evolution.

[53]  P. Thier,et al.  The origin of red algae and the evolution of chloroplasts , 2022 .

[54]  Hidemi Watanabe,et al.  Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia , 2002, Nature Genetics.

[55]  Temple F. Smith,et al.  Patterns of Genome Organization in Bacteria , 1998, Science.

[56]  T. Cavalier-smith,et al.  Phylogeny and classification of phylum Cercozoa (Protozoa). , 2003, Protist.