Edge-driven Image Interpolation using Adaptive Anisotropic Radial Basis Functions

This paper investigates the image interpolation problem, where the objective is to improve the resolution of an image by dilating it according to a given enlargement factor. We present a novel interpolation method based on Radial Basis Functions (RBF) which recovers a continuous intensity function from discrete image data samples. The proposed anisotropic RBF interpolant is designed to easily deal with the local anisotropy in the data, such as edge-structures in the image. Considering the underlying geometry of the image, this algorithm allows us to remove the artifacts that may arise when performing interpolation, such as blocking and blurring. Computed examples demonstrate the effectiveness of the method proposed by visual comparisons and quantitative measures.

[1]  Ping Wah Wong,et al.  Edge-directed interpolation , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[2]  Giulio Casciola,et al.  Shape preserving surface reconstruction using locally anisotropic radial basis function interpolants , 2006, Comput. Math. Appl..

[3]  Hao Jiang,et al.  A new direction adaptive scheme for image interpolation , 2002, Proceedings. International Conference on Image Processing.

[4]  Giulio Casciola,et al.  Fast surface reconstruction and hole filling using positive definite radial basis functions , 2005, Numerical Algorithms.

[5]  R. Schaback Optimal Recovery in Translation--invariant Spaces of Functions , 1996 .

[6]  François Malgouyres,et al.  Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis , 2001, SIAM J. Numer. Anal..

[7]  François Malgouyres,et al.  Total variation based interpolation , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[8]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[9]  Giulio Casciola,et al.  The regularizing properties of anisotropic radial basis functions , 2007, Appl. Math. Comput..

[10]  Thomas Martin Deserno,et al.  Survey: interpolation methods in medical image processing , 1999, IEEE Transactions on Medical Imaging.

[11]  Philip J. Willis,et al.  Image Interpolation by Pixel‐Level Data‐Dependent Triangulation , 2004, Comput. Graph. Forum.

[12]  Dimitris Anastassiou,et al.  Subpixel edge localization and the interpolation of still images , 1995, IEEE Trans. Image Process..

[13]  Mei-Juan Chen,et al.  A fast edge-oriented algorithm for image interpolation , 2005, Image Vis. Comput..

[14]  Hwang Soo Lee,et al.  Adaptive image interpolation based on local gradient features , 2004, IEEE Signal Process. Lett..

[15]  Seongjai Kim,et al.  Edge-Forming Methods for Image Zooming , 2006, Journal of Mathematical Imaging and Vision.

[16]  Sanjit K. Mitra,et al.  EDGE-ENHANCED IMAGE ZOOMING , 1996 .

[17]  Hanno Scharr,et al.  A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance , 2002, J. Vis. Commun. Image Represent..

[18]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[19]  L. Montefusco,et al.  Radial basis functions for the multivariate interpolation of large scattered data sets , 2002 .

[20]  Sheila S. Hemami,et al.  Regularity-preserving image interpolation , 1999, IEEE Trans. Image Process..