Chaperonins: two rings for folding.

[1]  M. Malumbres,et al.  Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin , 2011, Nature Structural &Molecular Biology.

[2]  W. Chiu,et al.  Dual Action of ATP Hydrolysis Couples Lid Closure to Substrate Release into the Group II Chaperonin Chamber , 2011, Cell.

[3]  K. Willison,et al.  A Two-step Mechanism for the Folding of Actin by the Yeast Cytosolic Chaperonin , 2010, The Journal of Biological Chemistry.

[4]  Kai Zhang,et al.  Crystal structure of group II chaperonin in the open state. , 2010, Structure.

[5]  A. Horovitz,et al.  Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes. , 2010, Journal of molecular biology.

[6]  F. Hartl,et al.  Chaperonin-Catalyzed Rescue of Kinetically Trapped States in Protein Folding , 2010, Cell.

[7]  Paul D. Adams,et al.  Crystal Structures of a Group II Chaperonin Reveal the Open and Closed States Associated with the Protein Folding Cycle*♦ , 2010, The Journal of Biological Chemistry.

[8]  Wah Chiu,et al.  4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement , 2010, Proceedings of the National Academy of Sciences.

[9]  M. Levitt,et al.  Mechanism of Folding Chamber Closure in a Group II Chaperonin , 2010, Nature.

[10]  M. Mann,et al.  Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei , 2009, Molecular microbiology.

[11]  K. Palczewski,et al.  Use of thallium to identify monovalent cation binding sites in GroEL. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[12]  Arthur L Horwich,et al.  Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding , 2009, Quarterly Reviews of Biophysics.

[13]  H. Taguchi,et al.  Cryo-EM structure of the native GroEL-GroES complex from thermus thermophilus encapsulating substrate inside the cavity. , 2009, Structure.

[14]  K. Maki,et al.  Sequential Action of ATP-dependent Subunit Conformational Change and Interaction between Helical Protrusions in the Closure of the Built-in Lid of Group II Chaperonins* , 2008, Journal of Biological Chemistry.

[15]  M. Gerstein,et al.  Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly-made proteins with complex topologies , 2008, Nature Structural &Molecular Biology.

[16]  I. Ohdomari,et al.  Effect of the C-terminal Truncation on the Functional Cycle of Chaperonin GroEL , 2008, Journal of Biological Chemistry.

[17]  Arturo Muga,et al.  The structure of CCT–Hsc70NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin , 2008, Nature Structural &Molecular Biology.

[18]  Renée L. Brost,et al.  The interaction network of the chaperonin CCT , 2008, The EMBO journal.

[19]  Amnon Horovitz,et al.  ATP-induced allostery in the eukaryotic chaperonin CCT is abolished by the mutation G345D in CCT4 that renders yeast temperature-sensitive for growth. , 2008, Journal of molecular biology.

[20]  K. Willison,et al.  Structure and Function of the Cytosolic Chaperonin CCT , 2008 .

[21]  G. Farr,et al.  Two families of chaperonin: physiology and mechanism. , 2007, Annual review of cell and developmental biology.

[22]  B. Jonsson,et al.  Domain-specific chaperone-induced expansion is required for beta-actin folding: a comparison of beta-actin conformations upon interactions with GroEL and tail-less complex polypeptide 1 ring complex (TRiC). , 2007, Biochemistry.

[23]  Ron Unger,et al.  Different mechanistic requirements for prokaryotic and eukaryotic chaperonins: a lattice study , 2007, ISMB/ECCB.

[24]  Wah Chiu,et al.  Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins , 2007, Nature Structural &Molecular Biology.

[25]  B. Jonsson,et al.  Conformational rearrangements of tail-less complex polypeptide 1 (TCP-1) ring complex (TRiC)-bound actin. , 2007, Biochemistry.

[26]  Julie Grantham,et al.  The inter‐ring arrangement of the cytosolic chaperonin CCT , 2007, EMBO reports.

[27]  J. Frydman,et al.  Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. , 2006, Molecular cell.

[28]  F. Hartl,et al.  Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Structural Features of the GroEL-GroES Nano-Cage Required for Rapid Folding of Encapsulated Protein , 2007 .

[29]  K. Nagata,et al.  Cytosolic chaperonin protects folding intermediates of Gβ from aggregation by recognizing hydrophobic β-strands , 2006 .

[30]  J. Valpuesta,et al.  PhLP3 Modulates CCT-mediated Actin and Tubulin Folding via Ternary Complexes with Substrates* , 2006, Journal of Biological Chemistry.

[31]  H. Saibil,et al.  Allosteric signaling of ATP hydrolysis in GroEL–GroES complexes , 2006, Nature Structural &Molecular Biology.

[32]  Amnon Horovitz,et al.  Allosteric regulation of chaperonins. , 2005, Current opinion in structural biology.

[33]  D. J. Naylor,et al.  Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli , 2005, Cell.

[34]  A. Clarke,et al.  Cooperativity in the thermosome. , 2005, Journal of molecular biology.

[35]  A. Horovitz,et al.  Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis , 2005, Nature Structural &Molecular Biology.

[36]  J. Carrascosa,et al.  Structure of the complex between the cytosolic chaperonin CCT and phosducin-like protein. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Kuwajima,et al.  Role of the Helical Protrusion in the Conformational Change and Molecular Chaperone Activity of the Archaeal Group II Chaperonin* , 2004, Journal of Biological Chemistry.

[38]  K. Willison,et al.  The substrate recognition mechanisms in chaperonins , 2004, Journal of molecular recognition : JMR.

[39]  Masafumi Yohda,et al.  Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. , 2004, Journal of molecular biology.

[40]  A. Horovitz,et al.  Conversion of the allosteric transition of GroEL from concerted to sequential by the single mutation Asp-155 → Ala , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Charu Chaudhry,et al.  Role of the γ‐phosphate of ATP in triggering protein folding by GroEL–GroES: function, structure and energetics , 2003, The EMBO journal.

[42]  Jörg Martin,et al.  Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm‐cpn , 2003, FEBS letters.

[43]  Andrej Shevchenko,et al.  The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. , 2003, Molecular cell.

[44]  A. Horovitz,et al.  Transient kinetic analysis of ATP-induced allosteric transitions in the eukaryotic chaperonin containing TCP-1. , 2003, Journal of molecular biology.

[45]  K. Willison,et al.  Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT , 2002, FEBS letters.

[46]  Laurence H Pearl,et al.  Crystal structure of the CCTgamma apical domain: implications for substrate binding to the eukaryotic cytosolic chaperonin. , 2002, Journal of molecular biology.

[47]  B. Gowen,et al.  ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy , 2001, Cell.

[48]  D. J. Naylor,et al.  Dual Function of Protein Confinement in Chaperonin-Assisted Protein Folding , 2001, Cell.

[49]  J. Ávila,et al.  Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics. , 2001, Journal of structural biology.

[50]  A. Horovitz,et al.  Review: allostery in chaperonins. , 2001, Journal of structural biology.

[51]  J Martín-Benito,et al.  Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. , 2001, Journal of structural biology.

[52]  A. Horovitz,et al.  Nested allosteric interactions in the cytoplasmic chaperonin containing TCP‐1 , 2001, Protein science : a publication of the Protein Society.

[53]  J Martín-Benito,et al.  Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi‐native conformations , 2000, The EMBO journal.

[54]  M Karplus,et al.  A Dynamic Model for the Allosteric Mechanism of GroEL , 2000 .

[55]  H. Saibil,et al.  Domain rotations between open, closed and bullet-shaped forms of the thermosome, an archaeal chaperonin. , 2000, Journal of molecular biology.

[56]  K. Furtak,et al.  Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL , 2000, Cell.

[57]  A. Joachimiak,et al.  Three conformations of an archaeal chaperonin, TF55 from Sulfolobus shibatae. , 2000, Journal of molecular biology.

[58]  Julie Grantham,et al.  Eukaryotic type II chaperonin CCT interacts with actin through specific subunits , 1999, Nature.

[59]  V. Thulasiraman,et al.  Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. , 1999, Molecular cell.

[60]  Judith Frydman,et al.  In vivo newly translated polypeptides are sequestered in a protected folding environment , 1999, The EMBO journal.

[61]  U. Gehring,et al.  Interference between Proteins Hap46 and Hop/p60, Which Bind to Different Domains of the Molecular Chaperone hsp70/hsc70 , 1998, Molecular and Cellular Biology.

[62]  Robert Huber,et al.  Crystal Structure of the Thermosome, the Archaeal Chaperonin and Homolog of CCT , 1998, Cell.

[63]  F. Sherman,et al.  The unique hetero-oligomeric nature of the subunits in the catalytic cooperativity of the yeast Cct chaperonin complex. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[64]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[65]  K. Willison,et al.  Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro‐complexes , 1997, The EMBO journal.

[66]  R. Williams,et al.  Cytoplasmic chaperonin containing TCP-1: structural and functional characterization. , 1997, Biochemistry.

[67]  J. Deisenhofer,et al.  The crystal structure of the GroES co-chaperonin at 2.8 Å resolution , 1996, Nature.

[68]  P. Adams,et al.  Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution , 1995, Nature Structural Biology.

[69]  A. Horovitz,et al.  Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. , 1995, Biochemistry.

[70]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[71]  R. Ellis Molecular Chaperones: Opening and closing the Anfinsen cage , 1994, Current Biology.

[72]  A. Ashworth,et al.  Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin , 1994, Current Biology.

[73]  Michael Levitt,et al.  Insights into the Intra-Ring Subunit Order of TriC/CCT: Structural and Evolutionary Analysis , 2010, Pacific Symposium on Biocomputing.

[74]  H. Saibil,et al.  Chaperonin complex with a newly folded protein encapsulated in the folding chamber , 2009, Nature.

[75]  D. Clark,et al.  Small molecule inhibition of a Group II chaperonin: pinpointing a loop region within the equatorial domain as necessary for protein refolding. , 2009, Archives of biochemistry and biophysics.