Exploratory landscape analysis

[1]  Bernd Bischl,et al.  Exploratory landscape analysis , 2011, GECCO '11.

[2]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[3]  Andries Petrus Engelbrecht,et al.  Quantifying ruggedness of continuous landscapes using entropy , 2009, 2009 IEEE Congress on Evolutionary Computation.

[4]  Mike Preuss,et al.  Exploratory landscape analysis: advanced tutorial at GECCO 2017 , 2017, GECCO.

[5]  Kaisa Miettinen,et al.  Automatic surrogate modelling technique selection based on features of optimization problems , 2019, GECCO.

[6]  Bart Naudts,et al.  Epistasis as a Basic Concept in Formal Landscape Analysis , 1997, ICGA.

[7]  Jakob Bossek,et al.  smoof: Single- and Multi-Objective Optimization Test Functions , 2017, R J..

[8]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[9]  Heike Trautmann,et al.  Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory Landscape Analysis and Machine Learning , 2017, Evolutionary Computation.

[10]  Marc Schoenauer,et al.  Per instance algorithm configuration of CMA-ES with limited budget , 2017, GECCO.

[11]  Pascal Kerschke,et al.  Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package Flacco , 2017, Studies in Classification, Data Analysis, and Knowledge Organization.

[12]  Marcus Gallagher,et al.  Analysing and characterising optimization problems using length scale , 2017, Soft Comput..

[13]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms with application to control engineering problems. , 1995 .

[14]  Heike Trautmann,et al.  Detecting Funnel Structures by Means of Exploratory Landscape Analysis , 2015, GECCO.

[15]  Heike Trautmann,et al.  Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis , 2010, PPSN.

[16]  Pascal Kerschke,et al.  An Expedition to Multimodal Multi-objective Optimization Landscapes , 2017, EMO.

[17]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[18]  Marc Schoenauer,et al.  Feature Based Algorithm Configuration: A Case Study with Differential Evolution , 2016, PPSN.

[19]  Mario A. Muñoz,et al.  Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges , 2015, Inf. Sci..

[20]  Heike Trautmann,et al.  Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models , 2016, GECCO.

[21]  Pascal Kerschke,et al.  flaccogui: exploratory landscape analysis for everyone , 2017, GECCO.

[22]  Pascal Kerschke,et al.  Single- and multi-objective game-benchmark for evolutionary algorithms , 2019, GECCO.

[23]  Bernd Bischl,et al.  Cell Mapping Techniques for Exploratory Landscape Analysis , 2014 .

[24]  L. Darrell Whitley,et al.  The dispersion metric and the CMA evolution strategy , 2006, GECCO.

[25]  Saman K. Halgamuge,et al.  Exploratory Landscape Analysis of Continuous Space Optimization Problems Using Information Content , 2015, IEEE Transactions on Evolutionary Computation.

[26]  Johann Dréo,et al.  Making a case for (Hyper-)parameter tuning as benchmark problems , 2019, GECCO.

[27]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[28]  Yuri Malitsky,et al.  Features for Exploiting Black-Box Optimization Problem Structure , 2013, LION.

[29]  Andries Petrus Engelbrecht,et al.  A survey of techniques for characterising fitness landscapes and some possible ways forward , 2013, Inf. Sci..

[30]  R. Geoff Dromey,et al.  An algorithm for the selection problem , 1986, Softw. Pract. Exp..

[31]  Mohamed Slimane,et al.  A Critical and Empirical Study of Epistasis Measures for Predicting GA Performances: A Summary , 1997, Artificial Evolution.

[32]  Simon M. Lucas,et al.  Evolving mario levels in the latent space of a deep convolutional generative adversarial network , 2018, GECCO.

[33]  Tomoharu Nagao,et al.  Bag of local landscape features for fitness landscape analysis , 2016, Soft Comput..

[34]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[35]  Heike Trautmann,et al.  Automated Algorithm Selection: Survey and Perspectives , 2018, Evolutionary Computation.

[36]  Anne Auger,et al.  COCO: a platform for comparing continuous optimizers in a black-box setting , 2016, Optim. Methods Softw..

[37]  Michael Affenzeller,et al.  A Comprehensive Survey on Fitness Landscape Analysis , 2012, Recent Advances in Intelligent Engineering Systems.

[38]  Heike Trautmann,et al.  Towards Analyzing Multimodality of Multiobjective Landscapes , 2016, PPSN 2016.

[39]  Olivier Teytaud,et al.  Exploring the MLDA benchmark on the nevergrad platform , 2019, GECCO.

[40]  Julian Francis Miller,et al.  Information Characteristics and the Structure of Landscapes , 2000, Evolutionary Computation.

[41]  Heike Trautmann,et al.  The R-Package FLACCO for exploratory landscape analysis with applications to multi-objective optimization problems , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).