Minmax-distance approximation and separation problems: geometrical properties

A center hyperplane in the d-dimensional space minimizes the maximum of its distances from a finite set of points A with respect to possibly different gauges. In this note it is shown that a center hyperplane exists which is at (equal) maximum distance from at least d + 1 points of A. Moreover the projections of the points among these which lie above the center hyperplane cannot be separated by another hyperplane from the projections of those that are below it. When all gauges involved are smooth, all center hyperplanes satisfy these properties. This geometric property allows us to improve and generalize previously existing results, which were only known for the case in which all distances are measured using a common norm. The results also extend to the constrained case where for some points it is prespecified on which side of the hyperplane (above, below or on) they must lie. In this case the number of points lying on the hyperplane plus those at maximum distance is at least d + 1. It follows that solving such global optimization problems reduces to inspecting a finite set of candidate solutions. Extensions of these results to a separation problem are outlined.

[1]  János Pach New Trends in Discrete and Computational Geometry , 2013 .

[2]  Jack Brimberg,et al.  Erratum to "Locating a minisum circle in the plane" [Discrete Appl. Math. 157 (5) (2009) 901-912] , 2010, Discret. Appl. Math..

[3]  F. Plastria,et al.  Gauge Distances and Median Hyperplanes , 2001 .

[4]  José Miguel Díaz-Báñez,et al.  Locating an obnoxious plane , 2006, Eur. J. Oper. Res..

[5]  H. Martini,et al.  Hyperplane Approximation and Related Topics , 1993 .

[6]  Jack Brimberg,et al.  Locating a minisum circle in the plane , 2009, Discret. Appl. Math..

[7]  Hiroshi Imai,et al.  Orthogonal Weighted Linear L1 and L∞ Approximation and Applications , 1993, Discret. Appl. Math..

[8]  Anita Schöbel,et al.  Anchored Hyperplane Location Problems , 2003, Discret. Comput. Geom..

[9]  Zvi Drezner,et al.  On the circle closest to a set of points , 2002, Comput. Oper. Res..

[10]  José Miguel Díaz-Báñez,et al.  Continuous location of dimensional structures , 2004, Eur. J. Oper. Res..

[11]  D. T. Lee,et al.  Geometric complexity of some location problems , 1986, Algorithmica.

[12]  Anita Schöbel,et al.  Locating least-distant lines in the plane , 1998, Eur. J. Oper. Res..

[13]  Horst Martini,et al.  Approximating Finite Weighted Point Sets by Hyperplanes , 1990, SWAT.

[14]  P. Chaudhuri On a geometric notion of quantiles for multivariate data , 1996 .

[15]  Frank Plastria,et al.  On destination optimality in asymmetric distance Fermat-Weber problems , 1993, Ann. Oper. Res..

[16]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[17]  Nimrod Megiddo,et al.  On the complexity of locating linear facilities in the plane , 1982, Oper. Res. Lett..

[18]  James G. Morris,et al.  Fitting hyperplanes by minimizing orthogonal deviations , 1980, Math. Program..

[19]  Nils J. Nilsson,et al.  Learning Machines: Foundations of Trainable Pattern-Classifying Systems , 1965 .

[20]  Frank Plastria,et al.  Optimal distance separating halfspace ∗ , 2002 .

[21]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[22]  Frank Plastria,et al.  Continuous Location Problems , 1995 .

[23]  Olvi L. Mangasarian,et al.  Arbitrary-norm separating plane , 1999, Oper. Res. Lett..

[24]  James G. Morris,et al.  Linear facility location -- Solving extensions of the basic problem , 1983 .

[25]  Georg Still,et al.  The Chebyshev Hyperplane Optimization Problem , 1997, J. Glob. Optim..

[26]  O. Mangasarian Linear and Nonlinear Separation of Patterns by Linear Programming , 1965 .

[27]  Anita Schöbel,et al.  Locating lines and hyperplanes , 1999 .

[28]  Horst Martini,et al.  Median and center hyperplanes in Minkowski spaces--a unified approach , 2001, Discret. Math..

[29]  D. T. Lee,et al.  1-Segment Center Problems , 1992, INFORMS J. Comput..

[30]  Godfried T. Toussaint,et al.  Computing the Width of a Set , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  G. O. Wesolowsky Location of the Median Line for Weighted Points , 1975 .

[32]  Frank Plastria,et al.  Alternating local search based VNS for linear classification , 2010, Ann. Oper. Res..

[33]  Frank Plastria,et al.  Locating a Central Hunter on the Plane , 2008 .

[34]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[35]  H. Martini,et al.  Two Characterizations of Smooth Norms , 1999 .

[36]  J. Orbach Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. , 1962 .

[37]  C. Michelot,et al.  Geometrical properties of the Fermat-Weber problem , 1985 .

[38]  Hiroshi Imai,et al.  Weighted Orthogonal Linear L∞-Approximation and Applications , 1989, WADS.

[39]  Pierre Hansen,et al.  Locating Objects in the Plane Using Global Optimization Techniques , 2009, Math. Oper. Res..

[40]  Jack Brimberg,et al.  Linear Facility Location in Three Dimensions - Models and Solution Methods , 2002, Oper. Res..

[41]  Frank Plastria,et al.  Optimal Expected-Distance Separating Halfspace , 2008, Math. Oper. Res..

[42]  O. Mangasarian,et al.  Robust linear programming discrimination of two linearly inseparable sets , 1992 .