Toward Highly Efficient Multimode Superconducting Quantum Memory

Microwave quantum memory promises advanced capabilities for noisy intermediate-scale superconducting quantum computers. Existing approaches to microwave quantum memory lack complete combination of high efficiency, long storage time, noiselessness and multi-qubit capacity. Here we report an efficient microwave broadband multimode quantum memory. The memory stores two spectral modes of single photon level microwave radiation in on-chip system of eight coplanar superconducting resonators. Single mode storage shows a power efficiency of up to $60\pm 3\%$ at single photon energy and more than $73\pm 3\%$ at higher intensity. The demonstrated efficiency is an order of magnitude larger than the previously reported multimode microwave quantum memory. The noiseless character of the storage is confirmed by coherent state quantum process tomography. The demonstrated results pave the way to further increase in efficiency and hence building a practical multimode microwave memory for superconducting quantum circuits.

[1]  Yu Song,et al.  Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds , 2022, npj Quantum Information.

[2]  L. Duan,et al.  On-Demand Storage and Retrieval of Microwave Photons Using a Superconducting Multiresonator Quantum Memory. , 2021, Physical review letters.

[3]  E. S. Moiseev,et al.  Broadband quantum memory in a cavity via zero spectral dispersion , 2021, 2106.15857.

[4]  S. Lloyd,et al.  Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon Networks , 2021, PRX Quantum.

[5]  A. Houck,et al.  New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds , 2020, Nature Communications.

[6]  A. Dunsworth,et al.  Materials loss measurements using superconducting microwave resonators. , 2020, The Review of scientific instruments.

[7]  P. Delsing,et al.  High quality three-dimensional aluminum microwave cavities , 2020, 2006.02213.

[8]  J. Morton,et al.  Multimode Storage of Quantum Microwave Fields in Electron Spins over 100 ms. , 2020, Physical review letters.

[9]  N. Perminov,et al.  Multiresonator Quantum Memory with Switcher , 2020, JETP Letters.

[10]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[11]  M. Scully,et al.  Nuclear Quantum Memory and Time Sequencing of a Single γ Photon. , 2018, Physical review letters.

[12]  N. Perminov,et al.  Spectral-Topological Superefficient Quantum Memory , 2017, Scientific Reports.

[13]  Lev S. Bishop,et al.  CIRCUIT QUANTUM ELECTRODYNAMICS , 2010, Mesoscopic Physics meets Quantum Engineering.

[14]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[15]  L. Frunzio,et al.  Fault-tolerant detection of a quantum error , 2018, Science.

[16]  N. Perminov,et al.  Broadband multiresonator quantum memory-interface , 2017, Scientific Reports.

[17]  Zijun Chen,et al.  Metrology of Quantum Control and Measurement in Superconducting Qubits , 2018 .

[18]  Liang Jiang,et al.  On-demand quantum state transfer and entanglement between remote microwave cavity memories , 2017, 1712.05832.

[19]  J. Brehm,et al.  Transmission-line resonators for the study of individual two-level tunneling systems , 2017, 1709.00381.

[20]  Jens Koch,et al.  Random access quantum information processors using multimode circuit quantum electrodynamics , 2017, Nature Communications.

[21]  Joseph Chuma,et al.  A review on quality factor enhanced on-chip microwave planar resonators , 2017 .

[22]  N. Perminov,et al.  Multiresonator quantum memory , 2017, 1705.01536.

[23]  Liang Jiang,et al.  Controlled release of multiphoton quantum states from a microwave cavity memory , 2016, Nature Physics.

[24]  E. S. Moiseev,et al.  All-optical photon echo on a chip , 2017, 1704.06471.

[25]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[26]  Liang Jiang,et al.  Quantum memory with millisecond coherence in circuit QED , 2015, 1508.05882.

[27]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[28]  T. Ohshima,et al.  Storage and retrieval of microwave fields at the single-photon level in a spin ensemble , 2015, 1504.02220.

[29]  Philip Reinhold,et al.  High-contrast qubit interactions using multimode cavity QED. , 2014, Physical review letters.

[30]  B. Huard,et al.  Superconducting quantum node for entanglement and storage of microwave radiation. , 2014, Physical review letters.

[31]  S. A. Moiseev,et al.  Time-bin quantum RAM , 2014, 1412.2459.

[32]  John M. Martinis,et al.  Catching Time-Reversed Microwave Coherent State Photons with 99.4% Absorption Efficiency , 2013, 1311.1180.

[33]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[34]  M. Afzelius,et al.  Proposal for a coherent quantum memory for propagating microwave photons , 2013, 1301.1858.

[35]  Klaus Mølmer,et al.  Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble. , 2013, Physical review letters.

[36]  S. Kröll,et al.  Efficient quantum memory using a weakly absorbing sample. , 2013, Physical review letters.

[37]  Mazyar Mirrahimi,et al.  Hardware-efficient autonomous quantum memory protection. , 2012, Physical review letters.

[38]  Aamir Anis,et al.  Maximum-likelihood coherent-state quantum process tomography , 2012, 1204.5936.

[39]  T. Umeda,et al.  Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. , 2011, Physical review letters.

[40]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[41]  J. Fink,et al.  Experimental state tomography of itinerant single microwave photons. , 2011, Physical review letters.

[42]  B. Sanders,et al.  Quantum process tomography with coherent states , 2010, 1009.3307.

[43]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[44]  S. A. Moiseev,et al.  Photon‐echo quantum memory in solid state systems , 2009 .

[45]  A I Lvovsky,et al.  Memory for light as a quantum process. , 2008, Physical review letters.

[46]  Barry C Sanders,et al.  Complete Characterization of Quantum-Optical Processes , 2008, Science.

[47]  Christoph Simon,et al.  A solid-state light–matter interface at the single-photon level , 2008, Nature.

[48]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[49]  J. P. Laboratory,et al.  A semiempirical model for two-level system noise in superconducting microresonators , 2008, 0804.0467.

[50]  Seth Lloyd,et al.  Quantum private queries. , 2007, Physical review letters.

[51]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[52]  A. Lvovsky Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.

[53]  S. Kröll,et al.  Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition. , 2001, Physical review letters.

[54]  Matteo G. A. Paris,et al.  Displacement operator by beam splitter , 1996 .

[55]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.