Polypyrrole-coated paper for flexible solid-state energy storage

Highly conductive paper was fabricated through polypyrrole (PPy) coating on common printing paper by a simple and low-cost “soak and polymerization” method. The as-fabricated porous, flexible and conductive paper shows a high electrical conductivity of 15 S cm−1 and a low sheet resistance of 4.5 Ω sq−1. Flexible solid-state supercapacitors assembled with PPy/paper composite electrodes had an average weight of 55 mg and an areal capacitance of 0.42 F cm−2, indicating a high energy density of 1 mW h cm−3 at a power density of 0.27 W cm−3 normalized to the volume of the whole cell (electrode, electrolyte, and separator). Furthermore, this method could be easily scaled up to large-scale fabrication of conductive paper and opened up new opportunities for flexible energy storage.

[1]  Xu Xiao,et al.  WO3−x/MoO3−x Core/Shell Nanowires on Carbon Fabric as an Anode for All‐Solid‐State Asymmetric Supercapacitors , 2012 .

[2]  Yu-Lun Chueh,et al.  Fiber-based all-solid-state flexible supercapacitors for self-powered systems. , 2012, ACS nano.

[3]  Teng Zhai,et al.  Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. , 2012, Nano letters.

[4]  Hua Zhang,et al.  Nanoporous Walls on Macroporous Foam: Rational Design of Electrodes to Push Areal Pseudocapacitance , 2012, Advanced materials.

[5]  Y. Tong,et al.  Design and synthesis of MnO₂/Mn/MnO₂ sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. , 2012, Nano letters.

[6]  Aaron D. Mazzeo,et al.  Paper‐Based, Capacitive Touch Pads , 2012, Advanced materials.

[7]  Xu Xiao,et al.  Paper-based supercapacitors for self-powered nanosystems. , 2012, Angewandte Chemie.

[8]  R. Ruoff,et al.  Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. , 2012, ACS nano.

[9]  L. Nyholm,et al.  Paper‐Based Energy‐Storage Devices Comprising Carbon Fiber‐Reinforced Polypyrrole‐Cladophora Nanocellulose Composite Electrodes , 2012 .

[10]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[11]  John R Miller,et al.  Valuing Reversible Energy Storage , 2012, Science.

[12]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[13]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[14]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[15]  Genevieve Dion,et al.  Carbon coated textiles for flexible energy storage , 2011 .

[16]  Weiwei Zhou,et al.  Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor , 2011 .

[17]  Feng Li,et al.  Graphene–Cellulose Paper Flexible Supercapacitors , 2011 .

[18]  Yi Cui,et al.  Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. , 2011, Nano letters.

[19]  F. Meng,et al.  Sub‐Micrometer‐Thick All‐Solid‐State Supercapacitors with High Power and Energy Densities , 2011, Advanced materials.

[20]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[21]  Xing Xie,et al.  Paper supercapacitors by a solvent-free drawing method† , 2011 .

[22]  Teng Zhai,et al.  Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor , 2011 .

[23]  Maria Strømme,et al.  Cycling stability and self-protective properties of a paper-based polypyrrole energy storage device , 2011 .

[24]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[25]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[26]  Jun Zhou,et al.  Carbon Nanoparticles on Carbon Fabric for Flexible and High‐Performance Field Emitters , 2011 .

[27]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[28]  Jun Zhang,et al.  Self-cleaning flexible infrared nanosensor based on carbon nanoparticles. , 2011, ACS nano.

[29]  A. Laforgue All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers , 2011 .

[30]  Y. Liao,et al.  Efficient and Scalable Synthesis of Pure Polypyrrole Nanoparticles Applicable for Advanced Nanocomposites and Carbon Nanoparticles , 2010 .

[31]  J. Boland Flexible electronics: Within touch of artificial skin. , 2010, Nature materials.

[32]  Dong Wang,et al.  Spontaneous growth of free-standing polypyrrole films at an air/ionic liquid interface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[33]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[34]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[35]  Jian Zhou,et al.  Anisotropic Motion of Electroactive Papers Coated with PEDOT/PSS , 2010 .

[36]  Yi Cui,et al.  Aqueous supercapacitors on conductive cotton , 2010 .

[37]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[38]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[39]  L. Nyholm,et al.  Ultrafast All-Polymer Paper-Based Batteries , 2009, Nano letters.

[40]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[41]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[42]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[43]  Zunli Mo,et al.  Heterogeneous preparation of cellulose-polyaniline conductive composites with cellulose activated by acids and its electrical properties , 2009 .

[44]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[45]  Jiyoung Oh,et al.  Preparation and electrochemical characterization of porous SWNT-PPy nanocomposite sheets for supercapacitor applications , 2008 .

[46]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[47]  L. Mai,et al.  Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries , 2007 .

[48]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[49]  Jong-Huy Kim,et al.  Polypyrrole/carbon composite electrode for high-power electrochemical capacitors , 2006 .

[50]  S. Pitchumani,et al.  Electrochemical deposition of polypyrrole for symmetric supercapacitors , 2006 .

[51]  M. J. Richardson,et al.  Electronic properties of intrinsically conducting polymer-cellulose based composites , 2006 .

[52]  J. Johnston,et al.  Conducting polymer composites with cellulose and protein fibres , 2006 .

[53]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[54]  F. Béguin,et al.  High-voltage asymmetric supercapacitors operating in aqueous electrolyte , 2006 .

[55]  G. Barbastathis,et al.  Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes , 2006 .

[56]  Ute Zschieschang,et al.  Organic electronics on paper , 2004 .

[57]  L. Qu,et al.  Electrochemical Growth of Polypyrrole Microcontainers , 2003 .

[58]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[59]  G. Chen,et al.  Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole , 2002 .

[60]  Suzy Kim,et al.  Solvent effects on the characteristics of soluble polypyrrole , 2000 .

[61]  Bruce Dunn,et al.  Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes , 1997 .

[62]  Shimshon Gottesfeld,et al.  Conducting polymers as active materials in electrochemical capacitors , 1994 .