Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup

[1]  C. Darwin On the origin of species by means of natural selection: Or the preservation of the favoured races in the struggle for life. , 2019 .

[2]  L. Holland,et al.  A revised fate map for amphioxus and the evolution of axial patterning in chordates. , 2007, Integrative and comparative biology.

[3]  Livia S. Carvalho,et al.  The FASEB Journal • Research Communication Functional characterization, tuning, and regulation , 2022 .

[4]  P. Janvier,et al.  Jaws and teeth of the earliest bony fishes , 2007, Nature.

[5]  M. Benton,et al.  Rocks and clocks: calibrating the Tree of Life using fossils and molecules. , 2007, Trends in ecology & evolution.

[6]  Shigehiro Kuraku,et al.  Hagfish embryology with reference to the evolution of the neural crest , 2007, Nature.

[7]  P. Janvier Evolutionary biology: Born-again hagfishes , 2007, Nature.

[8]  Ian A Meinertzhagen,et al.  Neurons of the ascidian larval nervous system in Ciona intestinalis: II. Peripheral nervous system , 2007, The Journal of comparative neurology.

[9]  T. Kusakabe,et al.  Origin of the Vertebrate Visual Cycle † , 2007, Photochemistry and photobiology.

[10]  Y. Kohara,et al.  Axial patterning in cephalochordates and the evolution of the organizer , 2007, Nature.

[11]  Shigehiro Kuraku,et al.  Time Scale for Cyclostome Evolution Inferred with a Phylogenetic Diagnosis of Hagfish and Lamprey cDNA Sequences , 2006, Zoological science.

[12]  L Mahadevan,et al.  A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia , 2006, Development.

[13]  Sarah J. Bourlat,et al.  Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida , 2006, Nature.

[14]  T. Horie,et al.  Origin of the Vertebrate Visual Cycle: III. Distinct Distribution of RPE65 and β-carotene 15,15′-Monooxygenase Homologues in Ciona intestinalis† , 2006, Photochemistry and photobiology.

[15]  Michael I. Coates,et al.  A lamprey from the Devonian period of South Africa , 2006, Nature.

[16]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[17]  W. Harris,et al.  Lineage in the vertebrate retina , 2006, Trends in Neurosciences.

[18]  P. Janvier Palaeontology: Modern look for ancient lamprey , 2006, Nature.

[19]  M. Delpech,et al.  Homozygous nonsense mutation in the FOXE3 gene as a cause of congenital primary aphakia in humans. , 2006, American journal of human genetics.

[20]  Samer Hattar,et al.  Central projections of melanopsin‐expressing retinal ganglion cells in the mouse , 2006, The Journal of comparative neurology.

[21]  S. D’Aniello,et al.  The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function. , 2006, Differentiation; research in biological diversity.

[22]  J. Welch,et al.  There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  V. Laudet,et al.  Amphioxus and tunicates as evolutionary model systems. , 2006, Trends in ecology & evolution.

[24]  P. Janvier,et al.  Lamprey-like gills in a gnathostome-related Devonian jawless vertebrate , 2006, Nature.

[25]  Akihisa Terakita,et al.  Parietal-Eye Phototransduction Components and Their Potential Evolutionary Implications , 2006, Science.

[26]  L. Holland,et al.  The amphioxus T‐box gene, AmphiTbx15/18/22, illuminates the origins of chordate segmentation , 2006, Evolution & development.

[27]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[28]  D. Klein Evolution of The Vertebrate Pineal Gland: The Aanat Hypothesis , 2006, Chronobiology international.

[29]  W. Harris,et al.  Influences on neural lineage and mode of division in the zebrafish retina in vivo , 2005, The Journal of cell biology.

[30]  C. D. Sauer,et al.  Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain. , 2005, Insect biochemistry and molecular biology.

[31]  N. Newman The Visual Neurosciences , 2005 .

[32]  S. Hedges,et al.  Molecular phylogeny and divergence times of deuterostome animals. , 2005, Molecular biology and evolution.

[33]  I. Provencio,et al.  Melanopsin and other novel mammalian opsins. , 2005, Experimental eye research.

[34]  A. Poustka,et al.  Timing and mechanism of ancient vertebrate genome duplications -- the adventure of a hypothesis. , 2005, Trends in genetics : TIG.

[35]  T. Morizumi,et al.  Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[36]  J. Welch,et al.  Molecular dates for the "cambrian explosion": the influence of prior assumptions. , 2005, Systematic biology.

[37]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  K. Peterson,et al.  Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. Spady,et al.  Rod and Cone Opsin Families Differ in Spectral Tuning Domains but Not Signal Transducing Domains as Judged by Saturated Evolutionary Trace Analysis , 2005, Journal of Molecular Evolution.

[40]  Hisao Tsukamoto,et al.  Cephalochordate Melanopsin: Evolutionary Linkage between Invertebrate Visual Cells and Vertebrate Photosensitive Retinal Ganglion Cells , 2005, Current Biology.

[41]  Lindell Bromham,et al.  Molecular dating when rates vary. , 2005, Trends in ecology & evolution.

[42]  Paramvir S. Dehal,et al.  Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate , 2005, PLoS biology.

[43]  Akihisa Terakita,et al.  The opsins , 2005, Genome Biology.

[44]  T. Morizumi,et al.  Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. , 2005, Biochemistry.

[45]  R. Haque,et al.  Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types , 2005, Journal of neurochemistry.

[46]  W. Gehring Historical perspective on the development and evolution of eyes and photoreceptors. , 2004, The International journal of developmental biology.

[47]  D. Arendt,et al.  Ciliary Photoreceptors with a Vertebrate-Type Opsin in an Invertebrate Brain , 2004, Science.

[48]  I. Potter,et al.  Vision in the southern hemisphere lamprey Mordacia mordax: Spatial distribution, spectral absorption characteristics, and optical sensitivity of a single class of retinal photoreceptor , 2004, Visual Neuroscience.

[49]  T. Lacalli,et al.  Sensory Systems in Amphioxus: A Window on the Ancestral Chordate Condition , 2004, Brain, Behavior and Evolution.

[50]  Sonja J. Prohaska,et al.  Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. , 2004, Molecular phylogenetics and evolution.

[51]  A. E. Trezíse,et al.  The origins of colour vision in vertebrates , 2004, Clinical & experimental optometry.

[52]  G. H. Jacobs,et al.  Evolution of vertebrate colour vision , 2004, Clinical & experimental optometry.

[53]  L. Ohno-Machado,et al.  Genomic Analysis of Mouse Retinal Development , 2004, PLoS biology.

[54]  D. Larhammar,et al.  Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications. , 2004, Genomics.

[55]  A. Terakita,et al.  Bistable UV pigment in the lamprey pineal. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  T. Miyata,et al.  Counterion displacement in the molecular evolution of the rhodopsin family , 2004, Nature Structural &Molecular Biology.

[57]  Y. Shichida,et al.  Diversity of visual pigments from the viewpoint of G protein activation—comparison with other G protein-coupled receptors , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[58]  D. Arendt Evolution of eyes and photoreceptor cell types. , 2003, The International journal of developmental biology.

[59]  T. Horie,et al.  Origin of the vertebrate visual cycle: II. Visual cycle proteins are localized in whole brain including photoreceptor cells of a primitive chordate , 2003, Vision Research.

[60]  M. A. Knight,et al.  Ancient colour vision: multiple opsin genes in the ancestral vertebrates , 2003, Current Biology.

[61]  H. Meissl,et al.  Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  P. Janvier Vertebrate characters and the Cambrian vertebrates , 2003 .

[63]  R. Mathies,et al.  Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[65]  A. Terakita,et al.  Origin of the vertebrate visual cycle: Genes encoding retinal photoisomerase and two putative visual cycle proteins are expressed in whole brain of a primitive chordate , 2003, The Journal of comparative neurology.

[66]  S. Kondrashev,et al.  Biplexiform ganglion cells in the retina of the perciform fish Pholidapus dybowskii revealed by HRP labeling from the optic nerve and optic tectum , 2003, Vision Research.

[67]  Á. Szél,et al.  Cerebrospinal Fluid Contacting Neurons in the Reduced Brain Ventricular System of the Atlantic Hagfish, Myxine glutinosa , 2003, Acta biologica Hungarica.

[68]  I. Potter,et al.  Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis) , 2003, Visual Neuroscience.

[69]  J. Klein,et al.  Molecular phylogeny of early vertebrates: monophyly of the agnathans as revealed by sequences of 35 genes. , 2003, Molecular biology and evolution.

[70]  S. Morris,et al.  Head and backbone of the Early Cambrian vertebrate Haikouichthys , 2003, Nature.

[71]  F. Tokunaga,et al.  Molecular evolution of proteins involved in vertebrate phototransduction. , 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[72]  A. Terakita,et al.  Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins. , 2002, Biochemistry.

[73]  K. Kubokawa,et al.  Amphioxus homologs of Go‐coupled rhodopsin and peropsin having 11‐cis‐ and all‐trans‐retinals as their chromophores , 2002, FEBS letters.

[74]  D. Siveter,et al.  New evidence on the anatomy and phylogeny of the earliest vertebrates , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[75]  Vincent Laudet,et al.  Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution. , 2002, Molecular biology and evolution.

[76]  Á. Szél,et al.  Nonvisual photoreceptors of the deep brain, pineal organs and retina. , 2002, Histology and histopathology.

[77]  P. Holland,et al.  Were vertebrates octoploid? , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[78]  M. Bronner‐Fraser,et al.  Conservation of Pax gene expression in ectodermal placodes of the lamprey. , 2002, Gene.

[79]  D. Arendt,et al.  Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. , 2002, Development.

[80]  P. Janvier,et al.  Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. , 2002, Molecular phylogenetics and evolution.

[81]  S. Sato,et al.  Development of pigment cells in the brain of ascidian tadpole larvae: insights into the origins of vertebrate pigment cells. , 2001, Pigment cell research.

[82]  T. Miyata,et al.  Divergence pattern of animal gene families and relationship with the Cambrian explosion , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[83]  D. Arendt,et al.  Reconstructing the eyes of Urbilateria. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[84]  N. Satoh,et al.  Ci‐opsin1, a vertebrate‐type opsin gene, expressed in the larval ocellus of the ascidian Ciona intestinalis , 2001, FEBS letters.

[85]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[86]  M. A. Raven,et al.  Disruption of transient photoreceptor targeting within the inner plexiform layer following early ablation of cholinergic amacrine cells in the ferret , 2001, Visual Neuroscience.

[87]  F. J. Livesey,et al.  Vertebrate neural cell-fate determination: Lessons from the retina , 2001, Nature Reviews Neuroscience.

[88]  S. Yokoyama Molecular evolution of vertebrate visual pigments , 2000, Progress in Retinal and Eye Research.

[89]  S. Morris The Cambrian "explosion": slow-fuse or megatonnage? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[90]  S. Collin,et al.  The Ocular Morphology of the Southern Hemisphere Lamprey Mordacia mordax Richardson with Special Reference to a Single Class of Photoreceptor and a Retinal Tapetum , 2000, Brain, Behavior and Evolution.

[91]  S. Morris,et al.  Evolution Bringing Molecules into the Fold , 2000, Cell.

[92]  B. Reese,et al.  Rods and cones project to the inner plexiform layer during development , 1999, The Journal of comparative neurology.

[93]  I. Potter,et al.  The Ocular Morphology of the Southern Hemisphere Lamprey Geotria australis Gray, with Special Reference to Optical Specialisations and the Characterisation and Phylogeny of Photoreceptor Types , 1999, Brain, Behavior and Evolution.

[94]  K. Kuma,et al.  Extensive Gene Duplication in the Early Evolution of Animals Before the Parazoan–Eumetazoan Split Demonstrated by G Proteins and Protein Tyrosine Kinases from Sponge and Hydra , 1999, Journal of Molecular Evolution.

[95]  Á. Szél,et al.  The pineal organ as a folded retina: immunocytochemical localization of opsins. , 1998, Biology of the cell.

[96]  K. Negishi,et al.  The eyes of deep-sea fish II. Functional morphology of the retina , 1998, Progress in Retinal and Eye Research.

[97]  Jean Paul Rio,et al.  Lamprey ganglion cells contact photoreceptor cells , 1998, Neuroscience Letters.

[98]  Y. Tsukahara,et al.  A Novel Go-mediated Phototransduction Cascade in Scallop Visual Cells* , 1997, The Journal of Biological Chemistry.

[99]  J. Nathans,et al.  Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[100]  H. Wagner Presynaptic bodies (”ribbons”): from ultrastructural observations to molecular perspectives , 1997, Cell and Tissue Research.

[101]  V. Meyer-Rochow,et al.  Review of larval and postlarval eye ultrastructure in the lamprey (cyclostomata) with special emphasis on Geotria australis (gray) , 1996, Microscopy research and technique.

[102]  A. Sidow Gen(om)e duplications in the evolution of early vertebrates. , 1996, Current opinion in genetics & development.

[103]  T. Lacalli,et al.  Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: evidence from 3D reconstructions , 1996 .

[104]  A. Reichenbach,et al.  Phylogenetic constraints on retinal organisation and development , 1995, Progress in Retinal and Eye Research.

[105]  R. Northcutt,et al.  Ontogeny of the head of the Pacific hagfish (Eptatretus stouti, Myxinoidea): development of the lateral line system. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[106]  Toshiyuki Okano,et al.  Pinopsin is a chicken pineal photoreceptive molecule , 1994, Nature.

[107]  D. Nilsson,et al.  A pessimistic estimate of the time required for an eye to evolve , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[108]  R. Foster,et al.  Immunocytochemical identification of photoreceptor proteins in hypothalamic cerebrospinal fluid-contacting neurons of the larval lamprey (Petromyzon marinus) , 1994, Cell and Tissue Research.

[109]  D. Oprian,et al.  Identification of the Cl(-)-binding site in the human red and green color vision pigments. , 1993, Biochemistry.

[110]  S. Morris The fossil record and the early evolution of the Metazoa , 1993, Nature.

[111]  Y. Fukada,et al.  Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[112]  K. Rubinson The developing visual system and metamorphosis in the lamprey. , 1990, Journal of neurobiology.

[113]  Bernd Fritzsch,et al.  Dendritic distribution of two populations of ganglion cells and the retinopetal fibers in the retina of the silver lamprey (Ichthyomyzon unicuspis) , 1990, Visual Neuroscience.

[114]  S. Grillner,et al.  Organization of the six motor nuclei innervating the ocular muscles in lamprey , 1990, The Journal of comparative neurology.

[115]  M. Samejima,et al.  Photoreceptor cells and neural elements with long axonal processes in the pineal organ of the lamprey, Lampetra japonica, identified by use of the horseradish peroxidase method , 1989, Cell and Tissue Research.

[116]  K. Rubinson,et al.  Neural differentiation in the retina of the larval sea lamprey (Petromyzon marinus) , 1989, Visual Neuroscience.

[117]  L. Vollrath,et al.  Ribbon synapses of the mammalian retina contain two types of synaptic bodies-ribbons and spheres , 1989, Journal of neurocytology.

[118]  R. Wetts,et al.  Multipotent precursors can give rise to all major cell types of the frog retina. , 1988, Science.

[119]  C. Holt,et al.  Cellular determination in the xenopus retina is independent of lineage and birth date , 1988, Neuron.

[120]  Constance L. Cepko,et al.  A common progenitor for neurons and glia persists in rat retina late in development , 1987, Nature.

[121]  T. Bullock,et al.  Evolution of myelin sheaths: Both lamprey and hagfish lack myelin , 1984, Neuroscience Letters.

[122]  V. Govardovskii,et al.  Visual cells and visual pigments of the lamprey,Lampetra fluviatilis , 1984, Journal of Comparative Physiology A.

[123]  T. Kusunoki,et al.  Retinal projections in the hagfish, Eptatretus burgeri , 1983, Brain Research.

[124]  D. Dickson,et al.  Corneal splitting in the developing lamprey Petromyzon marinus L. eye. , 1982, The American journal of anatomy.

[125]  A. Mariani,et al.  Biplexiform cells: ganglion cells of the primate retina that contact photoreceptors. , 1982, Science.

[126]  M. Bownds Molecular mechanisms of visual transduction , 1981, Trends in Neurosciences.

[127]  J. Dowling,et al.  Anatomical and physiological characteristics of pineal photoreceptor cell in the larval lamprey, Petromyzon marinus. , 1981, Journal of neurophysiology.

[128]  Don H. Anderson,et al.  Disc morphogenesis in vertebrate photoreceptors , 1980, Vision Research.

[129]  J. Krebs,et al.  Arms races between and within species , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[130]  D. Dickson,et al.  Retinal development in the lamprey (Petromyzon marinus L.): premetamorphic ammocoete eye. , 1979, The American journal of anatomy.

[131]  K. Holmberg,et al.  Fine structure of retinal synaptic organelles in lamprey and hagfish photoreceptors , 1976, Vision Research.

[132]  P. Gilbert,et al.  Refractive and histological study of accommodation in two species of sharks (Ginglymostoma cirratum and Carcharhinus milberti). , 1976, Canadian journal of zoology.

[133]  E. Raviola,et al.  Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits , 1975, The Journal of cell biology.

[134]  K. Holmberg,et al.  The eyes in three genera of hagfish (Eptatretus, paramyxine andMyxine)—A case of degenerative evolution , 1975, Vision Research.

[135]  M. Sanders Handbook of Sensory Physiology , 1975 .

[136]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[137]  K. P. Kuchnow The elasmobranch pupillary response. , 1971, Vision research.

[138]  A. Gorman,et al.  Photoreceptors in Primitive Chordates: Fine Structure, Hyperpolarizing Receptor Potentials, and Evolution , 1971, Science.

[139]  R. M. Eakin,et al.  Ultrastructure of sensory receptors in ascidian tadpoles , 1970, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[140]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[141]  N. Dilly Studies on the Receptors in the Cerebral Vesicle of the Ascidian Tadpole, 2. The Ocellus , 1964 .

[142]  H. Kobayashi On the photo-perceptive function in the eye of the hagfish,Myxine garmani Jordan et Snyder. , 1964 .

[143]  D. Newth,et al.  On the Reaction to Light of Myxine Glutinosa L , 1955 .

[144]  G. L. Walls,et al.  The Vertebrate Eye and Its Adaptive Radiation , 1943 .

[145]  H. E. Roaf The Vertebrate Eye and its Adaptive Radiation , 1943, Nature.

[146]  R. Assheton Memoirs: On the Developement of the Optic Nerve of Vertebrates, and the Choroidal Fissure of Embryonic Life , 1892 .

[147]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[148]  Ian A Meinertzhagen,et al.  Neurons of the ascidian larval nervous system in Ciona intestinalis: I. Central nervous system , 2007, The Journal of comparative neurology.

[149]  Y. Fukada,et al.  A Median Third Eye: Pineal Gland Retraces Evolution of Vertebrate Photoreceptive Organs † , 2007, Photochemistry and photobiology.

[150]  G. Fuller,et al.  Central Nervous System , 2007 .

[151]  Jason S. Anderson,et al.  Major transitions in vertebrate evolution , 2007 .

[152]  R. Fernald The Evolution of Vertebrate Eyes , 2007 .

[153]  Jon H. Kaas,et al.  Evolution of nervous systems : a comprehensive reference , 2007 .

[154]  S. Conway Morris Darwin's dilemma: the realities of the Cambrian ‘explosion’ , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[155]  D. H. Rapaport Retinal Development: Retinal neurogenesis , 2006 .

[156]  Shaun P. Collin,et al.  Communication in Fishes , 2006 .

[157]  Alan G. Smith,et al.  A Geologic Time Scale 2004: Construction and summary of the geologic time scale , 2005 .

[158]  D. Larhammar,et al.  Numerous groups of chromosomal regional paralogies strongly indicate two genome doublings at the root of the vertebrates , 2004, Journal of Structural and Functional Genomics.

[159]  K. Holmberg The hagfish retina: Electron microscopic study comparing receptor and epithelial cells in the pacific hagfish, Polistotrema stouti, with those in the atlantic hagfish, Myxine glutinosa , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[160]  R. Holmberg The hagfish retina: Fine structure of retinal cells in Myxine glutinosa, L., with special reference to receptor and epithelial cells , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[161]  P. Röhlich,et al.  Cerebrospinal fluid-contacting neurons, sensory pinealocytes and Landolt's clubs of the retina as revealed by means of an electron-microscopic immunoreaction against opsin , 2004, Cell and Tissue Research.

[162]  B. Reese Developmental plasticity of photoreceptors. , 2004, Progress in brain research.

[163]  S. N. Barnes Fine structure of the photoreceptor and cerebral ganglion of the tadpole larva of Amaroucium constellatum (Verrill) (Subphylum: Urochordata; Class: Ascidiacea) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[164]  G. Henry,et al.  Bistratified amacrine cells in the retina of the tammar wallaby — Macropus eugenii , 2004, Experimental Brain Research.

[165]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[166]  R. Fensome,et al.  A Geologic Time Scale 2004: CONCEPTS AND METHODS , 2004 .

[167]  J. Gerhart,et al.  Evolution of the organizer and the chordate body plan. , 2001, The International journal of developmental biology.

[168]  R. Payne,et al.  Chapter 8 Phototransduction mechanisms in microvillar and ciliary photoreceptors of invertebrates , 2000 .

[169]  N. A. Locket,et al.  The Eyes of Hagfishes , 1998 .

[170]  R. Weber,et al.  The Biology of Hagfishes , 1998, Springer Netherlands.

[171]  B. Vígh,et al.  Immunoreactive excitatory amino acids in the parietal eye of lizards, a comparison with the pineal organ and retina , 1997, Cell and Tissue Research.

[172]  R. Gábriel,et al.  Synapses of biplexiform ganglion cells in the outer plexiform layer of the retina in Xenopus laevis. , 1995, Journal fur Hirnforschung.

[173]  A. Sidow,et al.  Gene duplications and the origins of vertebrate development. , 1994, Development (Cambridge, England). Supplement.

[174]  R. Northcutt,et al.  Retinofugal and retinopetal projections in the Pacific hagfish, Eptatretus stouti (Myxinoidea). , 1990, Brain, behavior and evolution.

[175]  B. Dreher,et al.  Development of the retinofugal pathway in birds and mammals: evidence for a common 'timetable'. , 1988, Brain, behavior and evolution.

[176]  J. Sivak,et al.  Environmental influence on shape of the crystalline lens: the amphibian example. , 1985, Experimental biology.

[177]  W. B. Harland,et al.  A Geologic time scale , 1982 .

[178]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.

[179]  C. Darwin,et al.  On the origin of species by means of natural selection; or, The preservation of favoured races in the struggle for life / by Charles Darwin. , 1860 .

[180]  Karl Ernst von Baer,et al.  Über Entwickelungsgeschichte der Thiere , 1828 .