The interaction between bovine cytochrome b(5) (cyt b(5)) and horse heart cytochrome c (cyt c) is investigated by NMR spectroscopy. Chemical shifts of cyt b(5) backbone resonances and side chain methyl resonances were monitored as a function of cyt c concentration. The shifts are small but saturatable and indicate that the binding of cyt b(5) with cyt c is in fast exchange. An equilibrium association constant of (6 +/- 3) x 10(4) M(-1) was obtained with a lower limit of 180 s(-1) for the dissociation rate of the complex. To resolve considerable ambiguities in the interpretation of the chemical shift mapping, (15)N relaxation experiments and cross-saturation experiments were used as alternative methods to map the cyt b(5)-cyt c binding interface. Results from the three experiments combined demonstrate that the conserved negatively charged region of cyt b(5) surrounding the solvent-exposed heme edge is involved in the interaction with cyt c. These data support the models proposed by Salemme and Mauk [(1976) J. Mol. Biol. 102, 563-568; (1993) Biochemistry 32, 6613-6623].