Unsteady-state shear strategies to enhance mass-transfer for the implementation of ultrapermeable membranes in reverse osmosis: A review

Abstract Advances in material science promise the development of a new generation of ultrapermeable membranes (UPMs) for reverse osmosis (RO) desalination and water reclamation, which will lead to reduced footprint and lower capital costs. However, due to the attendant increased concentration-polarization (CP) and membrane fouling effects, the higher fluxes are not possible unless the boundary-layer mass-transfer is enhanced to match the flux increase. In a conventional module, a two-fold increase in flux via UPM would require a four-fold increase in crossflow, generating a 12-fold increase in channel pressure drop. To overcome this, the application of unsteady-state shear to the membrane surface has the potential to be more energy-efficient than a steady-state high shear approach. Hence, this paper reviews a range of unsteady-state shear strategies, including gas sparging, vibrations, particle fluidization, and flow pulsations. Analysis shows that unsteady-state shear could allow for an enhancement of two- to five-fold at an incremental power cost of about 10% compared to the conventional RO desalination process. Some of the practical constraints to implementation are discussed and the promising options identified for further development. Novel modules and modes of operation could provide a challenge for material science and membrane preparation.

[1]  Steve Siverns,et al.  Comparison of Membrane-based Solutions for Water Reclamation and Desalination , 2005 .

[2]  David M. Bagley,et al.  Anaerobic Membrane Bioreactors: Applications and Research Directions , 2006 .

[3]  A. James,et al.  Critical flux enhancement in gas assisted microfiltration , 2006 .

[4]  Shamsuddin Ilias,et al.  Potential Applications of Pulsed Flow for Minimizing Concentration Polarization in Ultrafiltration , 1990 .

[5]  Yusuf Wibisono,et al.  Two-phase flow in membrane processes: A technology with a future , 2014 .

[6]  Gu Ping,et al.  Effect of powdered activated carbon dosage on retarding membrane fouling in MBR , 2006 .

[7]  Vicki Chen,et al.  Fibre movement induced by bubbling using submerged hollow fibre membranes , 2006 .

[8]  W. Gao,et al.  Membrane fouling control in ultrafiltration technology for drinking water production: A review , 2011 .

[9]  G. Green,et al.  Fouling of ultrafiltration membranes: lateral migration and the particle trajectory model , 1980 .

[10]  S. Rosenblat Flow between torsionally oscillating disks , 1960, Journal of Fluid Mechanics.

[11]  C. Cabassud,et al.  Air sparging for flux enhancement in nanofiltration membranes: application to O/W stabilised and non-stabilised emulsions , 2002 .

[12]  E. Lowe,et al.  DYNAMIC TURBULENCE PROMOTION IN REVERSE OSMOSIS PROCESSING OF LIQUID FOODS , 1971 .

[13]  S. Rouhani,et al.  Two-phase flow patterns: A review of research results , 1983 .

[14]  Ronan K. McGovern,et al.  Quantifying the potential of ultra-permeable membranes for water desalination , 2014 .

[15]  Evaluation of bubble flow properties between flat sheet membranes in membrane bioreactor , 2010 .

[16]  J. V. Dijk,et al.  Air sparging in capillary nanofiltration , 2006 .

[17]  Michel Y. Jaffrin,et al.  Contribution of various constituents of activated sludge to membrane bioreactor fouling , 2000 .

[18]  Georges Belfort,et al.  Fluid mechanics in membrane filtration: Recent developments☆ , 1989 .

[19]  J. F. Richardson,et al.  Solids movement in liquid fluidised beds—I Particle velocity distribution , 1968 .

[20]  Abderrahim Abbas,et al.  Flux enhancement of RO desalination processes , 2000 .

[21]  B. J. McCoy,et al.  Improving permeation flux by pulsed reverse osmosis , 1974 .

[22]  Matthias Kraume,et al.  The importance of fluid dynamics for MBR fouling mitigation. , 2012, Bioresource technology.

[23]  C. Cabassud,et al.  Flux enhancement by a continuous tangential gas flow in ultrafiltration hollow fibres for drinking water production: Effects of slug flow on cake structure , 1997 .

[24]  Robert H. Davis,et al.  The behavior of suspensions and macromolecular solutions in crossflow microfiltration , 1994 .

[25]  Josef Havel,et al.  Carbon nanotubes: toxicological impact on human health and environment , 2009 .

[26]  V. Chen,et al.  Transverse vibration as novel membrane fouling mitigation strategy in anaerobic membrane bioreactor applications , 2014 .

[27]  Nader M. Al-Bastak,et al.  Periodic Operation of a Reverse Osmosis Water Desalination Unit , 1998 .

[28]  H. Gomaa,et al.  Flux enhancement using oscillatory motion and turbulence promoters , 2011 .

[29]  Michel Y. Jaffrin,et al.  Dynamic shear-enhanced membrane filtration: A review of rotating disks, rotating membranes and vibrating systems , 2008 .

[30]  Abdelhamid Ajbar,et al.  Study of cyclic operation of RO desalination process , 2011 .

[31]  A. Fane,et al.  Hydrodynamic analysis of vibrating hollow fibre membranes , 2013 .

[32]  H. Gomaa Flux characteristics at oscillating membrane equipped with turbulent promoters , 2012 .

[33]  C. Fonade,et al.  Yeast suspension filtration: flux enhancement using an upward gas/liquid slug flow-application to continuous alcoholic fermentation with cell recycle. , 1998, Biotechnology and bioengineering.

[34]  Liang-Shih Fan,et al.  Wake properties of a single gas bubble in three-dimensional liquid-solid fluidized bed , 1988 .

[35]  A. Kumano,et al.  Cellulose Triacetate Membranes for Reverse Osmosis , 2008 .

[36]  J. Postlethwaite,et al.  Flux and transmission characteristics of a vibrating microfiltration system operated at high biomass loading , 2004 .

[37]  A comparison of hydrodynamic methods for mitigating particle fouling in submerged membrane filtration , 2008 .

[38]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005 .

[39]  R. V. D. Sman,et al.  Shear-induced diffusion model for microfiltration of polydisperse suspensions , 2002 .

[40]  Daizo Kunii,et al.  CHAPTER 3 – Fluidization and Mapping of Regimes , 1991 .

[41]  A. Al-Taweel,et al.  Intensification of membrane microfiltration using oscillatory motion , 2011 .

[42]  M. Jaffrin,et al.  Energy saving pulsatile mode cross flow filtration , 1994 .

[43]  Z. Cui,et al.  Fractionation of HSA and IgG by gas sparged ultrafiltration , 1997 .

[44]  Kazuo Yamamoto,et al.  Performance of membrane separation bioreactor at various temperatures for domestic wastewater treatment , 1994 .

[45]  M. Jaffrin,et al.  A hydrodynamic comparison between rotating disk and vibratory dynamic filtration systems , 2004 .

[46]  J. Smith,et al.  Wall mass transfer in liquid‐fluidized beds , 1967 .

[47]  John R. Grace,et al.  Tube wear in gas fluidized beds—II. Low velocity impact erosion and semi-empirical model for bubbling and slugging fluidized beds , 1991 .

[48]  Heesu Park,et al.  Flux Enhancement with Powdered Activated Carbon Addition in the Membrane Anaerobic Bioreactor , 1999 .

[49]  D. Stuckey,et al.  Activated Carbon Addition to a Submerged Anaerobic Membrane Bioreactor: Effect on Performance, Transmembrane Pressure, and Flux , 2007 .

[50]  N. Hankins,et al.  Fouling and cleaning of ultrafiltration membranes: A review , 2014 .

[51]  Feng Zhang,et al.  Membrane fouling control in a submerged membrane bioreactor with porous, flexible suspended carriers , 2006 .

[52]  C. Fonade,et al.  Flux enhancement in crossflow filtration using an unsteady jet , 1997 .

[53]  Rodney Andrews,et al.  Aligned Multiwalled Carbon Nanotube Membranes , 2004, Science.

[54]  R. Lockhart Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes , 1949 .

[55]  Avinoam Nir,et al.  Shear-induced particle migration in a polydisperse concentrated suspension , 1998 .

[56]  M. Jaffrin,et al.  Permeate flux enhancement by pressure and flow pulsations in microfiltration with mineral membranes , 1992 .

[57]  John R. Grace,et al.  Tube wear in gas fluidized beds—I. Experimental findings , 1990 .

[58]  Pierre Le-Clech,et al.  Fouling in membrane bioreactors used in wastewater treatment , 2006 .

[59]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[60]  S. Low,et al.  Characteristics of a vibration membrane in water recovery from a fine carbon loaded wastewater , 2003 .

[61]  Wolfgang Meier,et al.  Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z , 2007, Proceedings of the National Academy of Sciences.

[62]  Georges Belfort,et al.  Membrane modules: comparison of different configurations using fluid mechanics☆ , 1988 .

[63]  K. A. Matis,et al.  A hybrid flotation–microfiltration cell for solid/liquid separation: operational characteristics , 2006 .

[64]  Enhancement of membrane permeability by gas-sparging in submerged hollow fibre ultrafiltration of macromolecular solutions: Role of module design , 2006 .

[65]  G. Belfort,et al.  Measurements of single spherical particle trajectories with lateral migration in a slit with one porous wall under laminar flow conditions , 1986 .

[66]  V. Chen,et al.  Application of low frequency transverse vibration on fouling limitation in submerged hollow fibre membranes , 2012 .

[67]  Z. Cui,et al.  Enhancement of microfiltration of yeast suspensions using gas sparging – effect of feed conditions , 2005 .

[68]  R. C. Bindal,et al.  Carbon nanotube membranes for desalination and water purification: Challenges and opportunities , 2012 .

[69]  A. E. Dukler,et al.  Frictional pressure drop in two-phase flow: B. An approach through similarity analysis , 1964 .

[70]  D. Chisholm A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow , 1967 .

[71]  J. Grossman,et al.  Water desalination across nanoporous graphene. , 2012, Nano letters.

[72]  A. Grasmick,et al.  Floc size distribution in a membrane bioreactor and consequences for membrane fouling , 1998 .

[73]  Hardy Temmink,et al.  Why low powdered activated carbon addition reduces membrane fouling in MBRs. , 2010, Water research.

[74]  Adrian Wing-Keung Law,et al.  The relationship between performance of submerged hollow fibers and bubble-induced phenomena examined by particle image velocimetry , 2007 .

[75]  Massoud Pirbazari,et al.  Hybrid membrane filtration process for leachate treatment , 1996 .

[76]  B. Lawn,et al.  Indentation fracture: principles and applications , 1975 .

[77]  C. Liu Advances in Membrane Technologies for Drinking Water Purification , 2014 .

[78]  J. Wesselingh,et al.  Single Particles, Bubbles and Drops , 1999 .

[79]  Hassan Gomaa,et al.  Analysis of flux enhancement at oscillating flat surface membranes , 2011 .

[80]  Hassan Gomaa,et al.  Effect of flow oscillations on mass transfer in electrodialysis with bipolar membrane , 2012 .

[81]  A. Fane,et al.  Submerged hollow fibre membrane filtration with transverse and longitudinal vibrations , 2014 .

[82]  G. Jonsson,et al.  Dynamic Microfiltration with a Vibrating Hollow Fiber Membrane Module: Filtration of Yeast Suspensions , 2006 .

[83]  Tong Zhang,et al.  Effect of activated carbon on fouling of activated sludge filtration , 2006 .

[84]  M. Balakrishnan,et al.  Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent. , 2009, Journal of hazardous materials.

[85]  David Cohen-Tanugi Nanoporous graphene as a desalination membrane : a computational study , 2012 .

[86]  Z. Cui,et al.  Airlift crossflow membrane filtration — a feasibility study with dextran ultrafiltration , 1997 .

[87]  Georges Belfort,et al.  Fluid mechanics and cross-flow filtration: some thoughts , 1985 .

[88]  P Cornel,et al.  Effect of mechanical cleaning with granular material on the permeability of submerged membranes in the MBR process. , 2010, Water research.

[89]  S. Taha,et al.  The effect of a static mixer on the ultrafiltration of a two-phase flow , 2000 .

[90]  Seeram Ramakrishna,et al.  Carbon nanotube membranes for water purification: A bright future in water desalination , 2014 .

[91]  Tatsuki Ueda,et al.  Effects of aeration on suction pressure in a submerged membrane bioreactor , 1997 .

[92]  Mark M. Benjamin,et al.  Effect of shear rate on fouling in a Vibratory Shear Enhanced Processing (VSEP) RO system , 2011 .

[93]  G. Jonsson,et al.  Dynamic microfiltration with a vibrating hollow fiber membrane module , 2006 .

[94]  T. Arnot,et al.  A review of reverse osmosis membrane materials for desalinationDevelopment to date and future poten , 2011 .

[95]  M. Defossez,et al.  Concentration polarization formation in ultrafiltration of blood and plasma , 1993 .

[96]  Analysis of Particle Fouling in Constant Pressure Submerged Membrane Filtration , 2010 .

[97]  Marcel Mulder,et al.  Basic Principles of Membrane Technology , 1991 .

[98]  Anja Drews,et al.  Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures , 2010 .

[99]  Sheng Chang Filtration of biomass with axial inter-fibre upward slug flow: performance and mechanisms , 2000 .

[100]  R. Boom,et al.  Effects of particle size segregation on crossflow microfiltration performance: control mechanism for concentration polarisation and particle fractionation , 2006 .

[101]  S. Schiewer,et al.  Anti-fouling application of air sparging and backflushing for MBR , 2006 .

[102]  Andrzej Kmiec,et al.  Particle distributions and dynamics of particle movement in solid—liquid fluidized beds , 1978 .

[103]  M. Pidou,et al.  Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment , 2011, Environmental technology.

[104]  H. Fadaei,et al.  Comparative assessment of the efficiencies of gas sparging and back-flushing to improve yeast microfiltration using tubular ceramic membranes , 2007 .

[105]  Anil Kumar Pabby,et al.  Handbook of Membrane Separations : Chemical, Pharmaceutical, Food, and Biotechnological Applications , 2008 .

[106]  Chyouh Wu Huang,et al.  The Characteristic Analysis of Interrupted Flow Pulsation on Ultrafiltration System , 2013 .

[107]  A. P. Burdukov,et al.  Local characteristics of upward gas-liquid flows , 1981 .

[108]  A. Fane,et al.  Mechanisms of Fouling Control in Membrane Bioreactors by the Addition of Powdered Activated Carbon , 2010 .

[109]  A. Fane,et al.  The use of gas bubbling to enhance membrane processes , 2003 .

[110]  T. E. Doll,et al.  Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues-evaluation of the long-term stability of the photocatalytic activity of TiO2. , 2005, Water research.

[111]  Zhenyu Li,et al.  Influence of gas sparging on clarification of pineapple wine by microfiltration , 2010 .

[112]  Hang-Sik Shin,et al.  Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors , 2003 .

[113]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[114]  K. Ahn,et al.  Particle behavior in air agitation submerged membrane filtration , 2003 .

[115]  Duu-Jong Lee,et al.  Membrane Fouling Mitigation: Membrane Cleaning , 2010 .

[116]  Kwang-Ho Choo,et al.  Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor , 1996 .

[117]  William B. Krantz,et al.  Use of axial membrane vibrations to enhance mass transfer in a hollow tube oxygenator , 1997 .

[118]  Michel Y. Jaffrin,et al.  An hydrodynamic investigation of microfiltration and ultrafiltration in a vibrating membrane module , 2002 .

[119]  Y. Watanabe,et al.  Performance of nanofiltration membrane in a vibrating module (VSEP-NF) for arsenic removal , 2010 .

[120]  Xia Huang,et al.  Mechanism of membrane fouling control by suspended carriers in a submerged membrane bioreactor , 2008 .

[121]  Adrian Wing-Keung Law,et al.  Fouling control of submerged hollow fibre membranes by vibrations , 2013 .

[122]  M. Suidan,et al.  Performance deterioration and structural changes of a ceramic membrane bioreactor due to inorganic abrasion , 1999 .

[123]  Emad Ali,et al.  Optimization-based periodic forcing of RO desalination process for improved performance , 2013 .

[124]  M. C. Porter Concentration Polarization with Membrane Ultrafiltration , 1972 .

[125]  R. Wakeman,et al.  Shear stress-based modelling of steady state permeate flux in microfiltration enhanced by two-phase flows , 2004 .

[126]  Jaeho Bae,et al.  Anaerobic fluidized bed membrane bioreactor for wastewater treatment. , 2011, Environmental science & technology.

[127]  T. Cheng Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane , 2002 .

[128]  T. Cheng,et al.  Quantitative Flux Analysis of Gas–Liquid Two-Phase Ultrafiltration , 2003 .

[129]  M. Maye,et al.  Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure. , 2009, Environmental pollution.

[130]  B. Bethune The surface cracking of glassy polymers under a sliding spherical indenter , 1976 .

[131]  Hyung Gyu Park,et al.  Ion exclusion by sub-2-nm carbon nanotube pores , 2008, Proceedings of the National Academy of Sciences.

[132]  J. Koning,et al.  Use of fluidised beds as turbulence promotors in tubular membrane systems , 1977 .

[133]  Guocheng Du,et al.  Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling , 2005 .

[134]  Robert H. Davis Modeling of Fouling of Crossflow Microfiltration Membranes , 1992 .

[135]  Georges Belfort,et al.  Lateral migration of spherical particles in porous flow channels: application to membrane filtration , 1984 .

[136]  Wei Shi,et al.  Membrane interactions with NOM and an adsorbent in a vibratory shear enhanced filtration process (VSEP) system , 2008 .

[137]  J. Howell,et al.  The effect of pulsed flow on ultrafiltration fluxes in a baffled tubular membrane system , 1990 .

[138]  Jianrong Chen,et al.  Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment. , 2011, Journal of hazardous materials.

[139]  J. F. Richardson,et al.  Circulation patterns and velocity distributions for particles in a liquid fluidised bed , 1972 .

[140]  J. James,et al.  A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks , 2006, Critical reviews in toxicology.

[141]  Hyung Gyu Park,et al.  pH-tunable ion selectivity in carbon nanotube pores. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[142]  Yong Kang,et al.  DISPERSION AND FLUCTUATION OF FLUIDIZED PARTICLES IN A LIQUID-SOLID FLUIDIZED BED , 1990 .

[143]  Ahmad Fauzi Ismail,et al.  Carbon nanotubes for desalination: Performance evaluation and current hurdles , 2013 .

[144]  I. Chang,et al.  Effect of pump shear on the performance of a crossflow membrane bioreactor. , 2001, Water research.

[145]  Georges Belfort,et al.  Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities , 1993 .

[146]  Patrick O. Saboe,et al.  Biomimetic membranes: A review , 2014 .

[147]  M. Hashim,et al.  Effects of colloidal fouling and gas sparging on microfiltration of yeast suspension , 2005, Bioprocess and biosystems engineering.

[148]  S. Low,et al.  A combined VSEP and membrane bioreactor system , 2005 .

[149]  S. Chang,et al.  8 Techniques to Enhance Performance of Membrane Processes , 2009 .

[150]  Yuan Zhang,et al.  Critical flux and particle deposition of bidisperse suspensions during crossflow microfiltration , 2006 .

[151]  G. Jonsson,et al.  A vibrating membrane bioreactor (VMBR): Macromolecular transmission-influence of extracellular polymeric substances , 2009 .

[152]  Zhiwei Wang,et al.  Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation : Membrane foulant and gel layer characterization , 2008 .

[153]  Anastasios I. Zouboulis,et al.  Performance of VSEP vibratory membrane filtration system during the treatment of landfill leachates , 2008 .

[154]  Chuyang Y. Tang,et al.  Membrane cleaning in membrane bioreactors: A review , 2014 .

[155]  Thorbjörn Johannessen,et al.  A theoretical solution of the Lockhart and Martinelli flow model for calculating two-phase flow pressure drop and hold-up , 1972 .

[156]  Anthony G. Fane,et al.  Operation of Membrane Bioreactor with Powdered Activated Carbon Addition , 2006 .

[157]  G. Belfort,et al.  Particulate membrane fouling and recent developments in fluid mechanics of dilute suspensions , 1985 .

[158]  Anthony G Fane,et al.  Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor. , 2013, Water research.

[159]  Yanling He,et al.  Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors , 2005 .

[160]  Aaron M. Thomas,et al.  The Effect of Pulsatile Flows on the Transport Across Membranes: An Analytical and Experimental Study , 2007 .

[161]  Z. Cui,et al.  Enhancement of ultrafiltration by gas sparging with flat sheet membrane modules , 1998 .

[162]  Dawen Gao,et al.  Integrated anaerobic fluidized-bed membrane bioreactor for domestic wastewater treatment , 2014 .

[163]  Sungpyo Hong,et al.  Fouling control in activated sludge submerged hollow fiber membrane bioreactors , 2002 .

[164]  Chuyang Y. Tang,et al.  Desalination by biomimetic aquaporin membranes: Review of status and prospects , 2013 .

[165]  Dianne E. Wiley,et al.  Mechanisms by which pulsatile flow affects cross‐flow microfiltration , 1998 .

[166]  C. Fonade,et al.  How slug flow can enhance the ultrafiltration flux in mineral tubular membranes , 1997 .

[167]  Jia Wei Chew,et al.  Reverse core-annular flow of Geldart Group B particles in risers , 2012 .

[168]  Gas-slug enhanced hollow fibre ultrafiltration—an experimental study , 2004 .

[169]  Xia Huang,et al.  Effect of a suspended carrier on membrane fouling in a submerged membrane bioreactor. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[170]  A. Fane,et al.  The effect of vibration and coagulant addition on the filtration performance of submerged hollow fibre membranes , 2006 .

[171]  Andrew L. Zydney,et al.  A CONCENTRATION POLARIZATION MODEL FOR THE FILTRATE FLUX IN CROSS-FLOW MICROFILTRATION OF PARTICULATE SUSPENSIONS , 1986 .

[172]  Greg Johnson,et al.  VSEP Treatment of RO Reject from Brackish Well Water A Comparison of Conventional Treatment Methods and VSEP, a Vibrating Membrane Filtration System. , 2006 .

[173]  Pierre R. Bérubé,et al.  The effect of hydrodynamic conditions and system configurations on the permeate flux in a submerged hollow fiber membrane system , 2006 .

[174]  Alain Grasmick,et al.  Influence of supporting media in suspension on membrane fouling reduction in submerged membrane bior , 2011 .

[175]  Anthony G. Fane,et al.  Flux enhancement in crossflow microfiltration using a collapsible-tube pulsation generator , 1993 .

[176]  Michel Y. Jaffrin,et al.  Concentration of total milk proteins by high shear ultrafiltration in a vibrating membrane module , 2005 .

[177]  Simon Judd,et al.  Air sparging of a submerged MBR for municipal wastewater treatment , 2002 .

[178]  Corinne Cabassud,et al.  Air sparging with flat sheet nanofiltration: a link between wall shear stresses and flux enhancement☆ , 2002 .

[179]  Y. Chisti,et al.  Shear rate in stirred tank and bubble column bioreactors , 2006 .

[180]  M. Mercier-Bonin Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane , 2000 .

[181]  Xiao-jian Zhang,et al.  Effect of powdered activated carbon on immersed hollow fiber ultrafiltration membrane fouling caused by particles and natural organic matter , 2011 .

[182]  Z. Cui,et al.  Experimental study on the enhancement of yeast microfiltration with gas sparging , 2001 .

[183]  R. Chhabra,et al.  An experimental study of non-newtonian fluid flow in fluidized beds: minimum fluidization velocity and bed expansion characteristics , 1991 .

[184]  C. Hélix-Nielsen,et al.  Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: a comparative study of spinach SoPIP2;1 and E. coli AqpZ. , 2011, Biochimica et biophysica acta.

[185]  Usa. Fax New separation system extends the use of membranes , 1992 .

[186]  Z. Cui,et al.  Gas—liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions☆ , 1994 .

[187]  Anthony G. Fane,et al.  A review of fouling and fouling control in ultrafiltration , 1987 .

[188]  M. Jaffrin,et al.  Rationale of filtration enhancement in membrane plasmapheresis by pulsatile blood flow. , 1987, Life support systems : the journal of the European Society for Artificial Organs.

[189]  S. Elmaleh,et al.  Enhancing microfiltration through an inorganic tubular membrane by gas sparging , 2000 .

[190]  John J. J. Chen,et al.  An extension of the Lockhart-Martinelli theory of two phase pressure drop and holdup , 1981 .

[191]  C. Cabassud,et al.  How slug flow can improve ultrafiltration flux in organic hollow fibres , 1997 .

[192]  Anastasios I. Zouboulis,et al.  Vibratory shear enhanced processing membrane filtration applied for the removal of natural organic matter from surface waters , 2006 .

[193]  Peter A. Vanrolleghem,et al.  The role of blocking and cake filtration in MBR fouling , 2003 .