General Truthfulness Characterizations Via Convex Analysis

We present a model of truthful elicitation which generalizes and extends mechanisms, scoring rules, and a number of related settings that do not quite qualify as one or the other. Our main result is a characterization theorem, yielding characterizations for all of these settings, including a new characterization of scoring rules for non-convex sets of distributions. We generalize this model to eliciting some property of the agent’s private information, and provide the first general characterization for this setting. We also show how this yields a new proof of a result in mechanism design due to Saks and Yu.

[1]  Hang-Chin Lai,et al.  The Fenchel-Moreau theorem for set functions , 1988 .

[2]  Frank Nielsen,et al.  Bregman Voronoi Diagrams , 2007, Discret. Comput. Geom..

[3]  M. Schervish A General Method for Comparing Probability Assessors , 1989 .

[4]  Moshe Babaioff,et al.  Characterizing truthful multi-armed bandit mechanisms: extended abstract , 2009, EC '09.

[5]  Andrew B. Whinston,et al.  Proper scoring rules with arbitrary value functions , 2010 .

[6]  Stefan Reichelstein,et al.  Information-eliciting compensation schemes , 1985 .

[7]  Leon Hirsch,et al.  Fundamentals Of Convex Analysis , 2016 .

[8]  Jon Feldman,et al.  Algorithmic Methods for Sponsored Search Advertising , 2008, ArXiv.

[9]  D. Monderer,et al.  Monotonicity and Implementability , 2010 .

[10]  Paul R. Milgrom,et al.  Envelope Theorems for Arbitrary Choice Sets , 2002 .

[11]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[12]  R. McAfee,et al.  Multidimensional incentive compatibility and mechanism design , 1988 .

[13]  Jacob D. Abernethy,et al.  A Characterization of Scoring Rules for Linear Properties , 2012, COLT.

[14]  Rudolf Müller,et al.  Characterization of Revenue Equivalence , 2008 .

[15]  Dirk Siersma,et al.  Power diagrams and their applications , 2005 .

[16]  Matthias Messner,et al.  Extremal Incentive Compatible Transfers , 2008, J. Econ. Theory.

[17]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[18]  J. Rochet A necessary and sufficient condition for rationalizability in a quasi-linear context , 1987 .

[19]  Tuomas Sandholm,et al.  Decision rules and decision markets , 2010, AAMAS.

[20]  Amos Fiat,et al.  Approaching utopia: strong truthfulness and externality-resistant mechanisms , 2013, ITCS '13.

[21]  Tilmann Gneiting,et al.  Consistent scoring functions for quantiles , 2013 .

[22]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[23]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[24]  Jennifer Wortman Vaughan,et al.  A new understanding of prediction markets via no-regret learning , 2010, EC '10.

[25]  S. Bikhchandani,et al.  Weak Monotonicity Characterizes Deterministic Dominant-Strategy Implementation , 2006 .

[26]  Robin Hanson,et al.  Combinatorial Information Market Design , 2003, Inf. Syst. Frontiers.

[27]  J. Rochet The taxation principle and multi-time Hamilton-Jacobi equations☆ , 1985 .

[28]  Moshe Babaioff,et al.  Characterizing truthful multi-armed bandit mechanisms: extended abstract , 2008, EC '09.

[29]  L. J. Savage Elicitation of Personal Probabilities and Expectations , 1971 .

[30]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[31]  Moshe Tennenholtz,et al.  Responsive Lotteries , 2010, SAGT.

[32]  Aranyak Mehta,et al.  Designing Markets for Daily Deals , 2013, WINE.

[33]  Jennifer Wortman Vaughan,et al.  Efficient Market Making via Convex Optimization, and a Connection to Online Learning , 2013, TEAC.

[34]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[35]  Xin Guo,et al.  On the optimality of conditional expectation as a Bregman predictor , 2005, IEEE Trans. Inf. Theory.

[36]  E. Stacchetti,et al.  Multidimensional Mechanism Design for Auctions with Externalities , 1999 .

[37]  Jennifer Wortman Vaughan,et al.  Cost function market makers for measurable spaces , 2013, EC '13.

[38]  Jeffrey C. Ely,et al.  Ex-Post Incentive Compatible Mechanism Design , 2002 .

[39]  Yoav Shoham,et al.  Eliciting truthful answers to multiple-choice questions , 2009, EC '09.

[40]  H. Peters,et al.  Convex functions on non-convex domains , 1986 .

[41]  Jesús Cid-Sueiro,et al.  Proper losses for learning from partial labels , 2012, NIPS.

[42]  M. Yan Extension of Convex Function , 2012, 1207.0944.

[43]  Moshe Babaioff,et al.  Only valuable experts can be valued , 2011, EC '11.

[44]  Joseph Y. Halpern Reasoning about uncertainty , 2003 .

[45]  Christos H. Papadimitriou,et al.  Efficiency-Revenue Trade-Offs in Auctions , 2012, ICALP.

[46]  Franz Aurenhammer,et al.  A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1 , 1987, Discret. Comput. Geom..

[47]  Rudolf Müller,et al.  Weak monotonicity and Bayes-Nash incentive compatibility , 2007, Games Econ. Behav..

[48]  Yvonne Schuhmacher,et al.  Mechanism Design A Linear Programming Approach , 2016 .

[49]  Paul Klemperer,et al.  TROPICAL GEOMETRY TO ANALYSE DEMAND , 2014 .

[50]  Seyed Hossein Naeemi,et al.  Path-Monotonicity and Incentive Compatibility , 2010 .

[51]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[52]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[53]  Rishabh K. Iyer,et al.  The Lovasz-Bregman Divergence and connections to rank aggregation, clustering, and web ranking , 2013, UAI.

[54]  Ian A. Kash,et al.  Information elicitation for decision making , 2011, AAMAS.

[55]  J. Borwein,et al.  Convex Functions: Constructions, Characterizations and Counterexamples , 2010 .

[56]  Ian A. Kash,et al.  Decision Markets with Good Incentives , 2011, WINE.

[57]  Michael E. Saks,et al.  Weak monotonicity suffices for truthfulness on convex domains , 2005, EC '05.

[58]  B. Moldovanu,et al.  Efficient Design with Interdependent Valuations , 2001 .

[59]  David C. Parkes,et al.  Dwelling on the Negative: Incentivizing Effort in Peer Prediction , 2013, HCOMP.

[60]  Efe A. Ok Real analysis with economic applications , 2007 .

[61]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[62]  Robert D. Kleinberg,et al.  Truthful germs are contagious: a local to global characterization of truthfulness , 2008, EC '08.

[63]  Gabriel D. Carroll When Are Local Incentive Constraints Sufficient , 2012 .

[64]  Franz Aurenhammer,et al.  Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..

[65]  Rudolf Müller,et al.  Characterizing Incentive Compatibility for Convex Valuations , 2009, SAGT.

[66]  Yoav Shoham,et al.  Eliciting properties of probability distributions , 2008, EC '08.

[67]  Nicolas S. Lambert Elicitation and Evaluation of Statistical Forecasts , 2010 .

[68]  Siyu Zhang,et al.  Elicitation and Identification of Properties , 2014, COLT.

[69]  Jeffrey C. Ely,et al.  Mechanism design without revenue equivalence , 2013, J. Econ. Theory.

[70]  Craig Boutilier,et al.  Eliciting forecasts from self-interested experts: scoring rules for decision makers , 2011, AAMAS.

[71]  V. Krishna,et al.  Convex Potentials with an Application to Mechanism Design , 2001 .

[72]  Frank Nielsen,et al.  Statistical exponential families: A digest with flash cards , 2009, ArXiv.

[73]  E. Stacchetti,et al.  How (not) to sell nuclear weapons , 1996 .

[74]  Kent Osband,et al.  Providing incentives for better cost forecasting , 1985 .

[75]  Ian A. Kash,et al.  Vector-Valued Property Elicitation , 2015, COLT.