Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators

In this paper, we consider semi-infinite mathematical programming problems with equilibrium constraints (SIMPEC). We establish necessary and sufficient optimality conditions for the SIMPEC, using convexificators. We study the Wolfe type dual problem for the SIMPEC under the $$\partial ^{*}$$∂∗-convexity assumption. A Mond–Weir type dual problem is also formulated and studied for the SIMPEC under the $$\partial ^{*}$$∂∗-convexity, $$\partial ^{*}$$∂∗-pseudoconvexity and $$\partial ^{*}$$∂∗-quasiconvexity assumptions. Weak duality theorems are established to relate the SIMPEC and two dual programs in the framework of convexificators. Further, strong duality theorems are obtained under generalized standard Abadie constraint qualification.

[1]  Lorenz T. Biegler,et al.  Mathematical programs with equilibrium constraints (MPECs) in process engineering , 2003, Comput. Chem. Eng..

[2]  S. Nobakhtian,et al.  Necessary and sufficient conditions for nonsmooth mathematical programs with equilibrium constraints , 2010 .

[3]  Shashi Kant Mishra,et al.  Optimality Conditions and Duality for Semi-Infinite Mathematical Programming Problem with Equilibrium Constraints , 2015 .

[4]  Joydeep Dutta,et al.  Convexifactors, generalized convexity and vector optimization , 2004 .

[5]  Vaithilingam Jeyakumar,et al.  Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators , 1999 .

[6]  Marco A. López,et al.  Semi-infinite programming : recent advances , 2001 .

[7]  S.K. Mishra,et al.  On strong KKT type sufficient optimality conditions for nonsmooth multiobjective semi-infinite mathematical programming problems with equilibrium constraints , 2016, Oper. Res. Lett..

[8]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization: Theory, Practice and Software , 2014 .

[9]  P. Wolfe A duality theorem for non-linear programming , 1961 .

[10]  Shashi Kant Mishra,et al.  Duality for Nonsmooth Optimization Problems with Equilibrium Constraints, Using Convexificators , 2016, J. Optim. Theory Appl..

[11]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[12]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[13]  Vladimir F. Demyanov,et al.  Hunting for a Smaller Convex Subdifferential , 1997, J. Glob. Optim..

[14]  Lei Guo,et al.  Solving Mathematical Programs with Equilibrium Constraints , 2015, J. Optim. Theory Appl..

[15]  S. Sinha A Duality Theorem for Nonlinear Programming , 1966 .

[16]  Tschangho John Kim,et al.  Solving nonlinear bilevel programming models of the equilibrium network design problem: A comparative review , 1992, Ann. Oper. Res..

[17]  S. Nobakhtian,et al.  Optimality conditions for nonsmooth mathematical programs with equilibrium constraints, using convexificators , 2016 .

[18]  Lei Guo,et al.  Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints , 2013, J. Optim. Theory Appl..

[19]  M. Golestani,et al.  Convexificators and strong Kuhn-Tucker conditions , 2012, Comput. Math. Appl..

[20]  Stephan Dempe,et al.  Bilevel road pricing: theoretical analysis and optimality conditions , 2012, Ann. Oper. Res..

[21]  Nguyen Huy Chieu,et al.  A Relaxed Constant Positive Linear Dependence Constraint Qualification for Mathematical Programs with Equilibrium Constraints , 2013, J. Optim. Theory Appl..

[22]  Shashi Kant Mishra,et al.  On duality for mathematical programs with vanishing constraints , 2016, Ann. Oper. Res..

[23]  Nguyen Huy Chieu,et al.  Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and their Local Preservation Property , 2014, J. Optim. Theory Appl..

[24]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[25]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[26]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[27]  Jianzhon Zhang,et al.  Necessary Optimality Conditions in Terms of Convexificators in Lipschitz Optimization , 2006 .

[28]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[29]  Amos Uderzo,et al.  Convex Approximators, Convexificators and Exhausters: Applications to Constrained Extremum Problems , 2000 .

[30]  Jane J. Ye,et al.  Enhanced Karush–Kuhn–Tucker Conditions for Mathematical Programs with Equilibrium Constraints , 2014, J. Optim. Theory Appl..

[31]  R. Reemtsen,et al.  Semi‐Infinite Programming , 1998 .

[32]  Michael Ferris,et al.  Modeling water allocating institutions based on Multiple Optimization Problems with Equilibrium Constraints , 2013, Environ. Model. Softw..

[33]  E. Polak On the mathematical foundations of nondifferentiable optimization in engineering design , 1987 .

[34]  Lei Guo,et al.  Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints , 2013, J. Optim. Theory Appl..

[35]  Asgeir Tomasgard,et al.  A branch-and-bound method for discretely-constrained mathematical programs with equilibrium constraints , 2013, Ann. Oper. Res..

[36]  Gui-Hua Lin,et al.  A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints , 2002, Ann. Oper. Res..

[37]  Le Thi Hoai An,et al.  Duality for nonsmooth semi-infinite programming problems , 2012, Optim. Lett..

[38]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization , 2014 .

[39]  Surjeet Kaur Suneja,et al.  Optimality and Duality Results for Bilevel Programming Problem Using Convexifactors , 2011, J. Optim. Theory Appl..