Copula Density Estimation by Total Variation Penalized Likelihood

Copulas are full measures of dependence among random variables. They are increasingly popular among academics and practitioners in financial econometrics for modeling comovements between markets, risk factors, and other relevant variables. A copula's hidden dependence structure that couples a joint distribution with its marginals makes a parametric copula non-trivial. An approach to bivariate copula density estimation is introduced that is based on a penalized likelihood with a total variation penalty term. Adaptive choice of the amount of regularization is based on approximate Bayesian Information Criterion (BIC) type scores. Performance are evaluated through the Monte Carlo simulation.

[1]  Vijay Nair,et al.  Advances in statistical modeling and inference : essays in honor of Kjell A. Doksum , 2007 .

[2]  Claudia Klüppelberg,et al.  Statistical models and methods for dependence in insurance data , 2011 .

[3]  J. C. Rodríguez,et al.  Measuring financial contagion:a copula approach , 2007 .

[4]  Chong Gu MODEL INDEXING AND SMOOTHING PARAMETER SELECTION IN NONPARAMETRIC FUNCTION ESTIMATION , 1998 .

[5]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[6]  C. Genest,et al.  The Advent of Copulas in Finance , 2009 .

[7]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[8]  Yannick Malevergne,et al.  Testing the Gaussian copula hypothesis for financial assets dependences , 2001, cond-mat/0111310.

[9]  Arne Kovac,et al.  Extensions of Smoothing via Taut Strings , 2008, 0803.2931.

[10]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[11]  S. Satchell,et al.  THE BERNSTEIN COPULA AND ITS APPLICATIONS TO MODELING AND APPROXIMATIONS OF MULTIVARIATE DISTRIBUTIONS , 2004, Econometric Theory.

[12]  R. Koenker DENSITY ESTIMATION BY TOTAL VARIATION REGULARIZATION , 2006 .

[13]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[14]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[15]  Wotao Yin,et al.  Parametric Maximum Flow Algorithms for Fast Total Variation Minimization , 2009, SIAM J. Sci. Comput..

[16]  S. Osher,et al.  Fast TV Regularization for 2D Maximum Penalized Likelihood Estimation , 2011 .

[17]  Lei Liu,et al.  A Functional EM Algorithm for Mixing Density Estimation via Nonparametric Penalized Likelihood Maximization , 2009 .

[18]  N. Kolev,et al.  Copulas: A Review and Recent Developments , 2006 .

[19]  B. Silverman,et al.  On the Estimation of a Probability Density Function by the Maximum Penalized Likelihood Method , 1982 .

[20]  S. Chen,et al.  Nonparametric estimation of copula functions for dependence modelling , 2007 .

[21]  Yunmin Zhu,et al.  Linear B-spline copulas with applications to nonparametric estimation of copulas , 2008, Comput. Stat. Data Anal..

[22]  Jian-Feng Cai,et al.  Linearized Bregman Iterations for Frame-Based Image Deblurring , 2009, SIAM J. Imaging Sci..

[23]  Natalie Neumeyer,et al.  Estimating a bivariate density when there are extra data on one or both components , 2006 .

[24]  Andrew J. Patton Copula-Based Models for Financial Time Series , 2009 .

[25]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[26]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[27]  Frédo Durand,et al.  A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach , 2006, International Journal of Computer Vision.

[28]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[29]  Jeffrey M. Wooldridge,et al.  Solutions Manual and Supplementary Materials for Econometric Analysis of Cross Section and Panel Data , 2003 .

[30]  J. Mielniczuk,et al.  Estimating the density of a copula function , 1990 .

[31]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[32]  Nanny Wermuth,et al.  Multivariate Dependencies: Models, Analysis and Interpretation , 1996 .

[33]  Ser-Huang Poon,et al.  Modelling International Stock Market Contagion Using Copula and Risk Appetite , 2007 .

[34]  O. Scaillet,et al.  Nonparametric Estimation of Copulas for Time Series , 2002 .

[35]  D. Berry,et al.  Statistics: Theory and Methods , 1990 .

[36]  Z. Botev Nonparametric Density Estimation via Diffusion Mixing , 2007 .

[37]  Erwan Le Pennec,et al.  Thresholding methods to estimate copula density , 2008, J. Multivar. Anal..

[38]  Pravin K. Trivedi,et al.  Copula Modeling: An Introduction for Practitioners , 2007 .

[39]  F. O’Sullivan Discretized Laplacian Smoothing by Fourier Methods , 1991 .

[40]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[41]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[42]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[43]  P. Tseng,et al.  Density Estimation by Total Variation Penalized Likelihood Driven by the Sparsity ℓ1 Information Criterion , 2010 .

[44]  E. Luciano,et al.  Copula methods in finance , 2004 .

[45]  D. Girard Asymptotic comparison of (partial) cross-validation, GCV and randomized GCV in nonparametric regression , 1998 .

[46]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[47]  S. Keleş,et al.  Statistical Applications in Genetics and Molecular Biology Asymptotic Optimality of Likelihood-Based Cross-Validation , 2011 .

[48]  Paul Embrechts,et al.  Copulas: A Personal View , 2009 .

[49]  Thomas Mikosch,et al.  Copulas: Tales and facts , 2006 .

[50]  David Neumark,et al.  Unobserved Ability, Efficiency Wages, and Interindustry Wage Differentials , 1991 .

[51]  N. Balakrishnan,et al.  Continuous Bivariate Distributions , 2009 .

[52]  Philippe Lambert,et al.  Archimedean copula estimation using Bayesian splines smoothing techniques , 2007, Comput. Stat. Data Anal..

[53]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[54]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[55]  Markus Junker,et al.  Measurement of Aggregate Risk with Copulas , 2005 .

[56]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[57]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[58]  P. Hall On Kullback-Leibler loss and density estimation , 1987 .

[59]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[60]  Yin Zhang,et al.  User’s Guide for TVAL3: TV Minimization by Augmented Lagrangian and Alternating Direction Algorithms , 2010 .