Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method

Abstract In this Letter, an incompressible lattice Boltzmann model without compressible effect for simulating flow field and a new lattice Boltzmann model for correctly solving the Poisson–Boltzmann equation are introduced. The proposed models can be used to eliminate some unexpected errors in lattice Boltzmann method that has been applied to simulate electro-osmotic flow in microchannel. Transient behavior of electro-osmotic transport and effects due to the variations of the ionic concentration, channel height, external electric field and zeta (ζ) potential on the velocity profile were investigated with present models. Detailed numerical results are in good agreement with the corresponding analytical solutions or numerical results in existing literature.

[1]  Moran Wang,et al.  Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels. , 2006, Journal of colloid and interface science.

[2]  Qu,et al.  A Model for Overlapped EDL Fields. , 2000, Journal of colloid and interface science.

[3]  Rui Qiao,et al.  Transient analysis of electro‐osmotic transport by a reduced‐order modelling approach , 2003 .

[4]  L. Luo,et al.  Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model , 1997 .

[5]  B. Shi,et al.  Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method , 2002 .

[6]  X. Xia,et al.  Time-dependent starting profile of velocity upon application of external electrical potential in electroosmotic driven microchannels , 2006 .

[7]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[8]  C. L. Rice,et al.  Electrokinetic Flow in a Narrow Cylindrical Capillary , 1965 .

[9]  D. J. Harrison,et al.  Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections , 1994 .

[10]  Dongqing Li,et al.  Thermal end effects on electroosmotic flow in a capillary , 2004 .

[11]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[12]  Xiaoyi He,et al.  Lattice Boltzmann simulation of electrochemical systems , 2000 .

[13]  Baoming Li,et al.  Electrokinetic microfluidic phenomena by a lattice Boltzmann model using a modified Poisson-Boltzmann equation with an excluded volume effect. , 2004, The Journal of chemical physics.

[14]  N. Aluru,et al.  Meshless analysis of steady-state electro-osmotic transport , 2000, Journal of Microelectromechanical Systems.

[15]  He Zhenmin,et al.  EMC effect on p-A high energy collisions , 1991 .

[16]  Zhaoli Guo,et al.  A lattice Boltzmann algorithm for electro-osmotic flows in microfluidic devices. , 2005, The Journal of chemical physics.

[17]  B. Shi,et al.  Lattice BGK model for incompressible Navier-Stokes equation , 2000 .

[18]  P. Lallemand,et al.  Lattice Boltzmann method for moving boundaries , 2003 .

[19]  Miki Hirabayashi,et al.  The lattice BGK model for the Poisson equation , 2001 .

[20]  E. Y. K. Ng,et al.  Numerical Studies Of Developing Flow In Microchannel , 2003, Int. J. Comput. Eng. Sci..

[21]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[22]  N. Lobontiu Mechanics of microelectromechanical systems , 2004 .

[23]  B. L. G. Jonsson,et al.  Electro‐osmosis: Velocity profiles in different geometries with both temporal and spatial resolution , 1996 .

[24]  V. Chan,et al.  Transient analysis of electroosmotic flow in a slit microchannel. , 2002, Journal of colloid and interface science.

[25]  Lung-Ming Fu,et al.  Electroosmotic entry flow in a microchannel , 2001 .

[26]  Alidad Amirfazli,et al.  Symposium on Interfacial Phenomena in Micro‐ and Nanosystems , 2008 .

[27]  B. Shi,et al.  Discrete lattice effects on the forcing term in the lattice Boltzmann method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  J. Santiago Electroosmotic flows in microchannels with finite inertial and pressure forces. , 2001, Analytical chemistry.

[29]  Howard H. Hu,et al.  Numerical simulation of electroosmotic flow. , 1998, Analytical chemistry.

[30]  Quan Liao,et al.  Thermal effects on electro-osmotic pumping of liquids in microchannels , 2002 .

[31]  D. Burgreen,et al.  Electrokinetic Flow in Ultrafine Capillary Slits1 , 1964 .

[32]  N. Aluru,et al.  Ion concentrations and velocity profiles in nanochannel electroosmotic flows , 2003 .

[33]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[34]  S. Orszag,et al.  Extended Boltzmann Kinetic Equation for Turbulent Flows , 2003, Science.

[35]  Nicos Martys,et al.  Evaluation of the external force term in the discrete Boltzmann equation , 1998 .

[36]  H. Tseng,et al.  Transient Electrokinetic Flow in Fine Capillaries , 2001 .

[37]  M. Gad-el-Hak The MEMS Handbook , 2001 .

[38]  Ya Jin,et al.  Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips , 2003, Electrophoresis.

[39]  M. Oddy Electrokinetic transport phenomena , 2005 .

[40]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[41]  Drona Kandhai,et al.  Coupled lattice‐Boltzmann and finite‐difference simulation of electroosmosis in microfluidic channels , 2004 .

[42]  H. Girault,et al.  Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimensions , 2000, Analytical chemistry.