Semiparametric Double Balancing Score Estimation for Incomplete Data With Ignorable Missingness
暂无分享,去创建一个
Dean Follmann | Zonghui Hu | Jing Qin | J. Qin | D. Follmann | Zonghui Hu
[1] D. Rubin,et al. The central role of the propensity score in observational studies for causal effects , 1983 .
[2] J. Robins,et al. Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .
[3] L. Devroye,et al. Distribution-Free Consistency Results in Nonparametric Discrimination and Regression Function Estimation , 1980 .
[4] Roderick J. A. Little,et al. Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .
[5] W. Härdle. Nonparametric and Semiparametric Models , 2004 .
[6] H. Ichimura,et al. SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .
[7] Joseph Kang,et al. Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data , 2007, 0804.2958.
[8] B. Hansen. The prognostic analogue of the propensity score , 2008 .
[9] P. Ruud. Sufficient Conditions for the Consistency of Maximum Likelihood Estimation Despite Misspecifications of Distribution in Multinomial Discrete Choice Models , 1983 .
[10] C. Manski. Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator , 1985 .
[11] D. Horvitz,et al. A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .
[12] R. John,et al. Boundary modification for kernel regression , 1984 .
[13] R. Little,et al. Robust Likelihood-based Analysis of Multivariate Data with Missing Values , 2003 .
[14] J. Robins,et al. Semiparametric Efficiency in Multivariate Regression Models with Missing Data , 1995 .
[15] Ker-Chau Li,et al. Regression Analysis Under Link Violation , 1989 .
[16] Jeffrey D. Hart,et al. Kernel Regression When the Boundary Region is Large, with an Application to Testing the Adequacy of Polynomial Models , 1992 .
[17] R. D'Agostino. Adjustment Methods: Propensity Score Methods for Bias Reduction in the Comparison of a Treatment to a Non‐Randomized Control Group , 2005 .
[18] D. Brillinger. A Generalized Linear Model With “Gaussian” Regressor Variables , 2012 .
[19] J. Horowitz. A Smoothed Maximum Score Estimator for the Binary Response Model , 1992 .
[20] M. Wand,et al. Multivariate Locally Weighted Least Squares Regression , 1994 .
[21] J. Robins,et al. Estimating exposure effects by modelling the expectation of exposure conditional on confounders. , 1992, Biometrics.
[22] J. Lunceford,et al. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study , 2004, Statistics in medicine.
[23] J. Robins,et al. Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models , 1999 .
[24] J. S. Mehta,et al. A test for equality of means in the presence of correlation and missing values , 1973 .
[25] G. S. Watson,et al. Smooth regression analysis , 1964 .
[26] J. Hahn. On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects , 1998 .
[27] E. Nadaraya. On Estimating Regression , 1964 .
[28] Joseph L Schafer,et al. Analysis of Incomplete Multivariate Data , 1997 .
[29] Nicole A. Lazar,et al. Statistical Analysis With Missing Data , 2003, Technometrics.
[30] Philip E. Cheng,et al. Nonparametric Estimation of Mean Functionals with Data Missing at Random , 1994 .