A fast response/recovery of hydrophobic Pd/V2O5 thin films for hydrogen gas sensing

Abstract We have developed a fast and highly sensitive gas sensor based on the Pd/V2O5 thin films for the low temperature detection of hydrogen in the range 2–500 ppm in air. Sensor response, selectivity, and stability studies reveal excellent sensing of the thin films. The formation of vanadium bronze was studied by spectroscopic ellipsometry. The low temperature operation under ambient conditions and the wide range sensing indicates that these hydrophobic nanocrystalline thin films can be explored for optical as well as chemiresistive gas sensing applications.

[1]  S. Beke A review of the growth of V2O5 films from 1885 to 2010 , 2011 .

[2]  D. F. Ogletree,et al.  Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies , 2003, Nature.

[3]  B. Liu,et al.  Room-temperature hydrogen sensor based on grain-boundary controlled Pt decorated In2O3 nanocubes , 2014 .

[4]  Sang Han Park,et al.  Hydrogen sensing under ambient conditions using SnO₂ nanowires: synergetic effect of Pd/Sn codeposition. , 2013, Nano letters.

[5]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[6]  R. Chandra,et al.  Highly sensitive and selective CO gas sensor based on a hydrophobic SnO2/CuO bilayer , 2016 .

[7]  Il-Doo Kim,et al.  Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. , 2015, Nanoscale.

[8]  S. Simko,et al.  Elemental Palladium by XPS , 1994 .

[9]  Nicola Donato,et al.  Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers , 2012 .

[10]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[11]  S. Jain,et al.  Hydrogen sensing properties of nanostructured Pd/WO3 thin films: role of hydrophobicity during recovery process , 2014 .

[12]  Maria Losurdo,et al.  Spectroscopic ellipsometry investigation of V2O5 nanocrystalline thin films , 2001 .

[13]  Byung Hoon Kim,et al.  Hydrogen spillover in Pd-doped V2O5 nanowires at room temperature. , 2012, Chemistry, an Asian journal.

[14]  H. Chan,et al.  Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature , 2013, Scientific Reports.

[15]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[16]  Yun Chan Kang,et al.  Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers , 2010 .

[17]  R. Chandra,et al.  Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls , 2016 .

[18]  J. Pereira‐Ramos,et al.  Elaboration and characterization of crystalline RF-deposited V2O5 positive electrode for thin film batteries , 2009 .

[19]  C. E. Tracy,et al.  Stable Pd / V 2 O 5 Optical H 2 Sensor , 2002 .

[20]  Yi Wang,et al.  Hydrogen photochromism in V 2 O 5 layers prepared by the sol-gel technology , 2014 .

[21]  Zhengjun Zhang,et al.  Oxygen deficient V2O5 nanorods for gas sensing , 2011 .

[22]  Haibo Zhang,et al.  Effect of V2O5-content on electrode catalytic layer morphology and mixed potential ammonia sensor performance , 2016 .

[23]  Andreas Züttel,et al.  Materials for hydrogen storage , 2003 .

[24]  D. Barreca,et al.  Interrelation between nanostructure and optical properties of oxide thin films by spectroscopic ellipsometry , 2002 .

[25]  M. Okada,et al.  Hydrogenation and dehydrogenation processes of palladium thin films measured in situ by spectroscopic ellipsometry , 2009 .

[26]  Multilayer model for determining the thickness and refractive index of sol–gel coatings via laser ellipsometry , 2013 .

[27]  J. Pereira‐Ramos,et al.  Raman Microspectrometry Study of Electrochemical Lithium Intercalation into Sputtered Crystalline V2O5 Thin Films , 2008 .

[28]  Zabel,et al.  Hydrogen-induced lattice expansion in a (001)-oriented Mo/V superlattice. , 1996, Physical review. B, Condensed matter.

[29]  C. E. Tracy,et al.  Stable Pd/V2O5 Optical H2 Sensor. , 2002 .

[30]  Xuming Zhang,et al.  Hydrogenated V2O5 Nanosheets for Superior Lithium Storage Properties , 2016 .

[31]  J. Pereira‐Ramos,et al.  Lattice dynamics of β-V2O5: Raman spectroscopic insight into the atomistic structure of a high-pressure vanadium pentoxide polymorph. , 2012, Inorganic chemistry.

[32]  Jinbao Zhang,et al.  Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning , 2011 .

[33]  R. Chandra,et al.  A room temperature hydrogen sensor based on Pd–Mg alloy and multilayers prepared by magnetron sputtering , 2015 .

[34]  R. Chandra,et al.  Fast and reversible hydrogen sensing properties of Pd/Mg thin film modified by hydrophobic porous silicon substrate , 2015 .

[35]  G. Mor,et al.  Effect of palladium cap layer thickness on desorption of hydrogen from PrHx films: A spectroscopic ellipsometry study , 2001 .

[36]  C. Detavernier,et al.  In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films , 2015 .

[37]  C. Zhang,et al.  Sensing mechanism of hydrogen sensors based on palladium-loaded tungsten oxide (Pd–WO3) , 2013 .

[38]  Geoffrey A. Ozin,et al.  Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors , 2001 .

[39]  Tetsuya Kida,et al.  Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. , 2015, ACS applied materials & interfaces.

[40]  L. Nyborg,et al.  Stoichiometric vanadium oxides studied by XPS , 2012 .

[41]  Synthesis, structural and ellipsometric evaluation of V2O5 nanowires , 2013 .

[42]  P. S. Kumar,et al.  Self assembled V2O5 nanorods for gas sensors , 2010 .

[43]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[44]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[45]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[46]  T. Wang,et al.  One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers , 2015 .

[47]  B. Liu,et al.  Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite , 2014 .

[48]  Yongming Hu,et al.  Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures , 2012, Sensors.

[49]  Kwang‐Bum Kim,et al.  Improvement in electrochemical performance of V2O5 by Cu doping , 2007 .

[50]  D. Jung,et al.  Room-temperature gas sensor using carbon nanotube with cobalt oxides , 2014 .