Repeated-root constacyclic codes of length slmpn

For any different odd primes l and p, structure of constacyclic codes of length 2l m p n over a finite field Fq of characteritic p and their duals is established in term of their generator polynomials. Among other results, all linear complimentary dual and self-dual constacyclic codes of length 2l m p n over Fq are obtained.

[1]  Madhu Raka,et al.  Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless , 2012, Adv. Math. Commun..

[2]  Ana Slgean Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006 .

[3]  Madhu Raka,et al.  Cyclotomic numbers and primitive idempotents in the ring GF(q)[x]/(xpn-1) , 2004, Finite Fields Their Appl..

[4]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[5]  Xiang Yang,et al.  The condition for a cyclic code to have a complementary dual , 1994, Discret. Math..

[6]  Hai Quang Dinh,et al.  On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions , 2008, Finite Fields Their Appl..

[7]  Hongwei Liu,et al.  Constacyclic codes over finite fields , 2012, Finite Fields Their Appl..

[8]  Anuradha Sharma Self-dual and self-orthogonal negacyclic codes of length 2mpn over a finite field , 2015, Discret. Math..

[9]  Elwyn R. Berlekamp Negacyclic codes for the Lee metric , 1966 .

[10]  Hongwei Liu,et al.  Repeated-root constacyclic codes of length ℓp5 and their duals , 2014, Discret. Appl. Math..

[11]  James L. Massey,et al.  On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.

[12]  James L. Massey,et al.  Linear codes with complementary duals , 1992, Discret. Math..

[13]  Z. Wan Lectures on Finite Fields and Galois Rings , 2003 .

[14]  Shixin Zhu,et al.  On the distances of cyclic codes of length 2e over Z4 , 2010, Discret. Math..

[15]  Hai Q. Dinh,et al.  Constacyclic codes of length 2p s over F p m +uF p m . , 2016 .

[16]  Madhu Raka,et al.  A class of constacyclic codes over a finite field-II , 2012, Indian Journal of Pure and Applied Mathematics.

[17]  Hai Q. Dinh,et al.  Repeated-root constacyclic codes of length 2ps , 2012, Finite Fields Their Appl..

[18]  J. Wolfman Negacyclic and cyclic codes over Z/sub 4/ , 1999 .

[19]  Chaoping Xing,et al.  On Self-Dual Cyclic Codes Over Finite Fields , 2011, IEEE Transactions on Information Theory.

[20]  Hai Q. Dinh,et al.  Complete Distances of All Negacyclic Codes of Length Over , 2007 .

[21]  Ana Salagean,et al.  Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..

[22]  H. Dinh Constacyclic Codes of Length p^s Over Fpm + uFpm , 2010 .

[23]  Hai Q. Dinh,et al.  ON REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 4ps , 2013 .

[24]  M. Esmaeili,et al.  On complementary-dual quasi-cyclic codes , 2009, Finite Fields Their Appl..

[25]  Rudolf Lide,et al.  Finite fields , 1983 .

[26]  Nicolas Sendrier,et al.  Linear codes with complementary duals meet the Gilbert-Varshamov bound , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[27]  Elwyn R. Berlekamp,et al.  Algebraic Coding Theory: Revised Edition , 2015 .

[28]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[29]  Shixin Zhu,et al.  On cyclic self-dual codes , 2008, Applicable Algebra in Engineering, Communication and Computing.

[30]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[31]  Ron M. Roth,et al.  On cyclic MDS codes of length q over GF(q) , 1986, IEEE Trans. Inf. Theory.

[32]  S. Berman Semisimple cyclic and Abelian codes. II , 1967 .

[33]  Daniel J. Costello,et al.  Polynomial weights and code constructions , 1973, IEEE Trans. Inf. Theory.

[34]  Shixin Zhu,et al.  Repeated-root constacyclic codes of length 3lps and their dual codes , 2016, Finite Fields Their Appl..

[35]  Xiwang Cao,et al.  A class of minimal cyclic codes over finite fields , 2017, Discret. Math..

[36]  H. Q. Dinh,et al.  Complete Distances of All Negacyclic Codes of Length $2^{s}$ Over $\BBZ _{2^{a}}$ , 2007, IEEE Transactions on Information Theory.

[37]  Jacques Wolfmann,et al.  Negacyclic and cyclic codes over Z4 , 1999, IEEE Trans. Inf. Theory.

[38]  Madhu Raka,et al.  Self-dual and self-orthogonal negacyclic codes of length 2pn over a finite field , 2013, Finite Fields Their Appl..