Adaptive Density Estimation From Data With Small Measurement Errors
暂无分享,去创建一个
[1] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[2] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[3] E. Nadaraya. On Estimating Regression , 1964 .
[4] G. S. Watson,et al. Smooth regression analysis , 1964 .
[5] E. Nadaraya. Remarks on Non-Parametric Estimates for Density Functions and Regression Curves , 1970 .
[6] C. J. Stone,et al. Consistent Nonparametric Regression , 1977 .
[7] L. Devroye,et al. Distribution-Free Consistency Results in Nonparametric Discrimination and Regression Function Estimation , 1980 .
[8] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[9] L. Devroye. Necessary and sufficient conditions for the pointwise convergence of nearest neighbor regression function estimates , 1982 .
[10] L. Devroye. The Equivalence of Weak, Strong and Complete Convergence in $L_1$ for Kernel Density Estimates , 1983 .
[11] L. Devroye. On arbitrarily slow rates of global convergence in density estimation , 1983 .
[12] W. Greblicki,et al. Fourier and Hermite series estimates of regression functions , 1985 .
[13] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[14] Y. Yatracos. Rates of Convergence of Minimum Distance Estimators and Kolmogorov's Entropy , 1985 .
[15] L. Devroye. A Course in Density Estimation , 1987 .
[16] Ewaryst Rafaj⌈owicz. Nonparametric orthogonal series estimators of regression: A class attaining the optimal convergence rate in L2☆ , 1987 .
[17] L. Devroye,et al. An equivalence theorem for L1 convergence of the kernel regression estimate , 1989 .
[18] G. Wahba. Spline models for observational data , 1990 .
[19] L. Devroye,et al. No Empirical Probability Measure can Converge in the Total Variation Sense for all Distributions , 1990 .
[20] G. Lugosi,et al. On the Strong Universal Consistency of Nearest Neighbor Regression Function Estimates , 1994 .
[21] Gábor Lugosi,et al. Nonparametric estimation via empirical risk minimization , 1995, IEEE Trans. Inf. Theory.
[22] Ewaryst Rafajlowicz,et al. Consistency of orthogonal series density estimators based on grouped observations , 1997, IEEE Trans. Inf. Theory.
[23] S. Delattre,et al. A central limit theorem for normalized functions of the increments of a diffusion process, in the presence of round-off errors , 1997 .
[24] Axthonv G. Oettinger,et al. IEEE Transactions on Information Theory , 1998 .
[25] L. Györfi,et al. On the asymptotic normality of the L2-error in partitioning regression estimation , 1998 .
[26] M. Kohler. Inequalities for uniform deviations of averages from expectations with applications to nonparametric regression , 2000 .
[27] Adam Krzyzak,et al. Nonparametric regression estimation using penalized least squares , 2001, IEEE Trans. Inf. Theory.
[28] Luc Devroye,et al. Combinatorial methods in density estimation , 2001, Springer series in statistics.
[29] Ulrich Stadtmüller,et al. Statistical Aspects of Sampling for Noisy and Grouped Data , 2001 .
[30] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[31] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[32] A. Meister. Deconvolution Problems in Nonparametric Statistics , 2009 .
[33] Schmisser Emeline. Non-parametric drift estimation for diffusions from noisy data , 2011 .
[34] F. Comte,et al. Nonparametric estimation for stochastic differential equations with random effects , 2013 .
[35] L. Devroye,et al. Estimation of a distribution from data with small measurement errors , 2013 .
[36] Michael Kohler,et al. Optimal global rates of convergence for noiseless regression estimation problems with adaptively chosen design , 2014, J. Multivar. Anal..
[37] A. Krzyżak,et al. Adaptive density estimation based on real and artificial data , 2015 .