TOKAM-3D: A 3D fluid code for transport and turbulence in the edge plasma of Tokamaks

We present a new code aiming at giving a global and coherent approach for transport and turbulence issues in the edge plasma of Tokamaks. The TOKAM-3D code solves 3D fluid drift equations in full-torus geometry including both closed field lines and SOL physics. No scale separation is assumed so that interactions between large scale flows and turbulence are coherently treated. Moreover, the code can be run in transport regimes ranging from purely anomalous diffusion to fully established turbulence. Specific numerical schemes have been developed which can solve the model equations whether the presence of a limiter in the plasma is taken into account or not. Example cases giving an overview of the field of application of the code as well as verification results are also presented.

[1]  Laurent Villard,et al.  A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..

[2]  Bastiaan J. Braams,et al.  Modelling of the boundary plasma of large tokamaks , 1984 .

[3]  P. Devynck,et al.  Kelvin-Helmholtz instabilities in tokamak edge plasmas , 1999 .

[4]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[5]  D. P. Coster,et al.  Effects of resistive drift wave turbulence on tokamak edge transport , 2004 .

[6]  L. L. LoDestro,et al.  Simulation of Plasma Fluxes to Material Surfaces with Self-consistent Edge Turbulence and Transport for Tokamaks , 2004 .

[7]  Philippe Ghendrih,et al.  The Plasma Boundary of Magnetic Fusion Devices , 2001 .

[8]  Ph. Ghendrih,et al.  Turbulence simulations of transport barrier relaxations in tokamak edge plasmas , 2007 .

[9]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[10]  Abhijit Sen,et al.  Simulation of plasma transport by coherent structures in scrape-off-layer tokamak plasmas , 2004 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  F. Wagner,et al.  Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .

[13]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[14]  Virginie Grandgirard,et al.  3D modelling of edge parallel flow asymmetries , 2009 .

[15]  J. Milovich,et al.  A fully implicit, time dependent 2-D fluid code for modeling tokamak edge plasmas , 1992 .

[16]  G. Corrigan,et al.  Modelling of SOL Flows and Target Asymmetries in JET Field Reversal Experiments with EDGE2D Code , 2000 .

[17]  C. W. Horton,et al.  Amplitude Limitation of a Collisional Drift Wave Instability , 1971 .

[18]  Ronald H. Cohen,et al.  Low-to-high confinement transition simulations in divertor geometry , 2000 .

[19]  B. Scott Low Frequency Fluid Drift Turbulence in Magnetised Plasmas , 2000 .

[20]  Ralf Schneider,et al.  Benchmark of the 3‐Dimensional Plasma Transport Codes E3D and BoRiS , 2002 .

[21]  William McCay Nevins,et al.  Correlation of Density Pedestal Width and Neutral Penetration , 2003 .

[22]  R. Chodura,et al.  Plasma–wall transition in an oblique magnetic field , 1982 .

[23]  H. Wilson,et al.  Experiments and simulation of edge turbulence and filaments in MAST , 2008 .

[24]  M. V. Umansky,et al.  Theory and fluid simulations of boundary-plasma fluctuations , 2007 .

[25]  Rowan,et al.  Fluctuation-induced energy flux in the tokamak edge. , 1989, Physical review letters.

[26]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[28]  Volker Naulin,et al.  Turbulent transport and the plasma edge , 2007 .

[29]  A W Leonard,et al.  Progress in characterization of the H-mode pedestal , 2008 .

[30]  S. I. Braginskii Transport Processes in a Plasma , 1965 .

[31]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[32]  Claudia Negulescu,et al.  Existence and uniqueness of the electric potential profile in the edge of tokamak plasmas when constrained by the plasma-wall boundary physics , 2008 .

[33]  Brian Labombard,et al.  Transport-driven Scrape-Off-Layer flows and the boundary conditions imposed at the magnetic separatrix in a tokamak plasma , 2004 .

[34]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[35]  R. LeVeque Numerical methods for conservation laws , 1990 .

[36]  P. T. Bonoli,et al.  Central impurity toroidal rotation in ICRF heated Alcator C-Mod plasmas , 1999 .

[37]  Ronald H. Cohen,et al.  Resistive X-point modes in tokamak boundary plasmas , 2000 .

[38]  Shuichi Takamura,et al.  Chapter 4: Power and particle control , 2007 .

[39]  Jack Dongarra,et al.  LAPACK Users' guide (third ed.) , 1999 .

[40]  Wootton,et al.  Space-potential and density fluctuations in the ISX-B tokamak. , 1987, Physical review letters.

[41]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[42]  X. Garbet,et al.  Theoretical understanding of turbulent transport in the SOL , 2003 .

[43]  J. Juul Rasmussen,et al.  Turbulence and intermittent transport at the boundary of magnetized plasmas , 2005 .

[44]  B. LaBombard,et al.  Universality of Intermittent Convective Transport in the Scrape‐off Layer of Magnetically Confined Devices , 2003 .

[45]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[46]  Y. Sarazin,et al.  Intermittent particle transport in two-dimensional edge turbulence , 1998 .

[47]  Bill Scott,et al.  Tokamak turbulence computations on closed and open magnetic flux surfaces , 2005 .