Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment

[1]  K. Doya,et al.  Chaos may enhance information transmission in the inferior olive. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  C. Darlot,et al.  Cerebellar learning of bio-mechanical functions of extra-ocular muscles: modeling by artificial neural networks , 2003, Neuroscience.

[3]  J C Houk,et al.  The role of the cerebellum in modulating voluntary limb movement commands. , 2002, Archives italiennes de biologie.

[4]  Bertrand Tondu,et al.  A model of the cerebellar pathways applied to the control of a single-joint robot arm actuated by McKibben artificial muscles , 2002, Biological Cybernetics.

[5]  M. L. McCurdy,et al.  Contribution of primate magnocellular red nucleus to timing of hand preshaping during reaching to grasp. , 2002, Journal of neurophysiology.

[6]  T. Anastasio,et al.  Input minimization: a model of cerebellar learning without climbing fiber error signals , 2001, Neuroreport.

[7]  Terrence J. Sejnowski,et al.  Parallel Fiber Coding in the Cerebellum for Life-Long Learning , 2001, Auton. Robots.

[8]  M. L. McCurdy,et al.  Role of primate magnocellular red nucleus neurons in controlling hand preshaping during reaching to grasp. , 2001, Journal of neurophysiology.

[9]  K. Doya,et al.  Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control , 2001, Neuroscience.

[10]  E. D'Angelo,et al.  Long-Term Potentiation of Intrinsic Excitability at the Mossy Fiber–Granule Cell Synapse of Rat Cerebellum , 2000, The Journal of Neuroscience.

[11]  Pierre Lopez,et al.  Modeling and control of McKibben artificial muscle robot actuators , 2000 .

[12]  Michael A. Arbib,et al.  Cerebellar learning of accurate predictive control for fast-reaching movements , 2000, Biological Cybernetics.

[13]  D. Linden,et al.  Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons , 2000, Nature Neuroscience.

[14]  L. Optican,et al.  Model of the control of saccades by superior colliculus and cerebellum. , 1999, Journal of neurophysiology.

[15]  E De Schutter,et al.  Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation , 1999, The European journal of neuroscience.

[16]  Erik De Schutter,et al.  Parallel Fibers Synchronize Spontaneous Activity in Cerebellar Golgi Cells , 1999, The Journal of Neuroscience.

[17]  James C. Houk,et al.  A Cerebellar Model of Timing and Prediction in the Control of Reaching , 1999, Neural Computation.

[18]  T. Ebner A role for the cerebellum in the control of limb movement velocity , 1998, Current Opinion in Neurobiology.

[19]  D M Wolpert,et al.  Multiple paired forward and inverse models for motor control , 1998, Neural Networks.

[20]  Christian Quaia,et al.  Distributed model of control of saccades by superior colliculus and cerebellum , 1998, Neural Networks.

[21]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[22]  V Taglietti,et al.  Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. , 1998, Journal of neurophysiology.

[23]  Nicolas Schweighofer,et al.  A model of activity-dependent formation of cerebellar microzones , 1998, Biological Cybernetics.

[24]  H J Jonker,et al.  Autonomous development of decorrelation filters in neural networks with recurrent inhibition. , 1998, Network.

[25]  M. Kawato,et al.  Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. , 1998, Journal of neurophysiology.

[26]  T. Sinkjaer,et al.  Primate red nucleus discharge encodes the dynamics of limb muscle activity. , 1998, Journal of neurophysiology.

[27]  M. Arbib,et al.  Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control , 1998, The European journal of neuroscience.

[28]  M. Arbib,et al.  Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum , 1998, The European journal of neuroscience.

[29]  James C. Houk,et al.  A model of cerebellar learning for control of arm movements using muscle synergies , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[30]  A G Barto,et al.  Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. , 1997, Journal of neurophysiology.

[31]  D. Tweed,et al.  Three-dimensional model of the human eye-head saccadic system. , 1997, Journal of neurophysiology.

[32]  S. Cull-Candy,et al.  Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. , 1996, The Journal of physiology.

[33]  R. Maex,et al.  The cerebellum: cortical processing and theory , 1996, Current Opinion in Neurobiology.

[34]  A. Gibson,et al.  Reduction of rostral dorsal accessory olive responses during reaching. , 1996, Journal of neurophysiology.

[35]  Daniel M. Wolpert,et al.  Forward Models for Physiological Motor Control , 1996, Neural Networks.

[36]  Douglas R. Wylie,et al.  More on climbing fiber signals and their consequence(s) , 1996 .

[37]  A. Barto,et al.  Models of the cerebellum and motor learning , 1996 .

[38]  Christian Darlot,et al.  Computation of inverse dynamics for the control of movements , 1996, Biological Cybernetics.

[39]  Michael A. Arbib,et al.  A model of the cerebellum in adaptive control of saccadic gain , 1996, Biological Cybernetics.

[40]  Thomas J. Anastasio,et al.  A random walk model of fast-phase timing during optokinetic nystagmus , 1996, Biological Cybernetics.

[41]  James C. Houk,et al.  A Predictive Switching Model of Cerebellar Movement Control , 1995, NIPS.

[42]  P. Dean,et al.  Modelling the role of the cerebellar fastigial nuclei in producing accurate saccades: the importance of burst timing , 1995, Neuroscience.

[43]  M. Kawato,et al.  Internal representations of the motor apparatus: implications from generalization in visuomotor learning. , 1995, Journal of experimental psychology. Human perception and performance.

[44]  Pierre Chauvet,et al.  Mathematical conditions for adaptive control in Marr's model of the sensorimotor system , 1995, Neural Networks.

[45]  E. D’Angelo,et al.  Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. , 1995, The Journal of physiology.

[46]  G A Chauvet,et al.  On associative motor learning by the cerebellar cortex: from Purkinje unit to network with variational learning rules. , 1995, Mathematical biosciences.

[47]  T. Ebner,et al.  Purkinje cell complex spike activity during voluntary motor learning: relationship to kinematics. , 1994, Journal of neurophysiology.

[48]  J. Midtgaard,et al.  Synaptic integration in a model of cerebellar granule cells. , 1994, Journal of neurophysiology.

[49]  J. Houk,et al.  Motor function of the cerebellorubrospinal system. , 1994, Physiological reviews.

[50]  Nicholas G. Hatsopoulos,et al.  Is a virtual trajectory necessary in reaching movements? , 1994, Biological Cybernetics.

[51]  J. Mayhew,et al.  Learning and Maintaining Saccadic Accuracy: A Model of BrainstemCerebellar Interactions , 1994, Journal of Cognitive Neuroscience.

[52]  C. Darlot The cerebellum as a predictor of neural messages—I. The stable estimator hypothesis , 1993, Neuroscience.

[53]  C. Darlot,et al.  The cerebellum as a predictor of neural messages—II. Role in motor control and motion sickness , 1993, Neuroscience.

[54]  M. Kawato,et al.  Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum , 1993, Nature.

[55]  J. McIntyre,et al.  Servo Hypotheses for the Biological Control of Movement. , 1993, Journal of motor behavior.

[56]  Mark D. Plumbley Efficient information transfer and anti-Hebbian neural networks , 1993, Neural Networks.

[57]  T. Ebner,et al.  Purkinje cell complex and simple spike changes during a voluntary arm movement learning task in the monkey. , 1992, Journal of neurophysiology.

[58]  T. Kawasaki,et al.  Short-term modulation of cerebellar Purkinje cell activity after spontaneous climbing fiber input. , 1992, Journal of neurophysiology.

[59]  S. G. Lisberger,et al.  Motor learning in a recurrent network model based on the vestibulo–ocular reflex , 1992, Nature.

[60]  M. Kawato,et al.  The cerebellum and VOR/OKR learning models , 1992, Trends in Neurosciences.

[61]  Ralph Linsker,et al.  Local Synaptic Learning Rules Suffice to Maximize Mutual Information in a Linear Network , 1992, Neural Computation.

[62]  Michael I. Jordan,et al.  Forward Models: Supervised Learning with a Distal Teacher , 1992, Cogn. Sci..

[63]  T Tyrrell,et al.  Cerebellar cortex: its simulation and the relevance of Marr's theory. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  Stephen Grossberg,et al.  Emergence of tri-phasic muscle activation from the nonlinear interactions of central and spinal neural network circuits , 1992 .

[65]  G. L. Gottlieb,et al.  Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements , 1991, Neuroscience.

[66]  M. Latash,et al.  An equilibrium-point model for fast, single-joint movement: II. Similarity of single-joint isometric and isotonic descending commands. , 1991, Journal of motor behavior.

[67]  M. Latash,et al.  An equilibrium-point model for fast, single-joint movement: I. Emergence of strategy-dependent EMG patterns. , 1991, Journal of motor behavior.

[68]  François Chapeau-Blondeau,et al.  A neural network model of the cerebellar cortex performing dynamic associations , 1991, Biological Cybernetics.

[69]  T. Vilis,et al.  Geometric relations of eye position and velocity vectors during saccades , 1990, Vision Research.

[70]  P. Földiák,et al.  Forming sparse representations by local anti-Hebbian learning , 1990, Biological Cybernetics.

[71]  J. Keeler A dynamical system view of cerebellar function , 1990 .

[72]  Richard S. Sutton,et al.  Neural networks for control , 1990 .

[73]  James C. Houk,et al.  An Adaptive Sensorimotor Network Inspired by the Anatomy and Physiology , 1989 .

[74]  S. Keele,et al.  Timing Functions of The Cerebellum , 1989, Journal of Cognitive Neuroscience.

[75]  J. W. Moore,et al.  Adaptively timed conditioned responses and the cerebellum: A neural network approach , 1989, Biological Cybernetics.

[76]  S. Lisberger,et al.  Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex. , 1988, Science.

[77]  S G Lisberger,et al.  The neural basis for learning of simple motor skills. , 1988, Science.

[78]  S. Amari,et al.  Dynamic Interactions in Neural Networks: Models and Data , 1988, Research Notes in Neural Computing.

[79]  Michael G. Paulin,et al.  A Kalman filter theory of the cerebellum , 1988 .

[80]  P. Strata,et al.  Dynamic characteristics of optokinetically controlled eye movements following inferior olive lesions in the brown rat. , 1988, The Journal of physiology.

[81]  H. Noda,et al.  Afferent and efferent connections of the oculomotor cerebellar vermis in the macaque monkey , 1987, The Journal of comparative neurology.

[82]  W. Hines,et al.  A multivariate solution for cyclic data, applied in modelling locomotor forces , 1987, Biological Cybernetics.

[83]  G. Chauvet Habituation rules for a theory of the cerebellar cortex , 1986, Biological Cybernetics.

[84]  M. G. Paulin,et al.  A vestibulo-ocular reflex with no head movement , 1986, Biological Cybernetics.

[85]  A. G. Feldman Once More on the Equilibrium-Point Hypothesis (λ Model) for Motor Control , 1986 .

[86]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[87]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[88]  M. Kano,et al.  Long-term depression of parallel fibre synapses following stimulation of climbing fibres , 1985, Brain Research.

[89]  J. Houk,et al.  Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. , 1985, Journal of neurophysiology.

[90]  N. Hogan An organizing principle for a class of voluntary movements , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  E. Bizzi,et al.  Posture control and trajectory formation during arm movement , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  Masao Ito The Cerebellum And Neural Control , 1984 .

[93]  J. Houk,et al.  Somatosensory properties of the inferior olive of the cat , 1983, The Journal of comparative neurology.

[94]  E. Bizzi,et al.  Mechanical properties of muscles: Implications for motor control , 1982, Trends in Neurosciences.

[95]  M. Fujita,et al.  Adaptive filter model of the cerebellum , 1982, Biological Cybernetics.

[96]  D. Melkonian,et al.  Simulation of learning processes in neuronal networks of the cerebellum , 1982, Biological Cybernetics.

[97]  F. Bloom,et al.  Golgi cells of the cerebellum are inhibited by inferior olive activity , 1981, Brain Research.

[98]  A. Pellionisz,et al.  Tensorial approach to the geometry of brain function: Cerebellar coordination via a metric tensor , 1980, Neuroscience.

[99]  A. G. Feldman Superposition of motor programs—II. Rapid forearm flexion in man , 1980, Neuroscience.

[100]  A. G. Feldman Superposition of motor programs—I. Rhythmic forearm movements in man , 1980, Neuroscience.

[101]  O. Oscarsson Functional units of the cerebellum - sagittal zones and microzones , 1979, Trends in Neurosciences.

[102]  A. Pellionisz,et al.  Brain modeling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination , 1979, Neuroscience.

[103]  E. Bizzi,et al.  Effect of load disturbances during centrally initiated movements. , 1978, Journal of neurophysiology.

[104]  J. K. Harting Descending pathways from the superior colliculus: An autoradiographic analysis in the rhesus monkey (Macaca mulatta) , 1977, The Journal of comparative neurology.

[105]  J. T. Weber,et al.  Brain stem projections to lobule VII of the posterior vermis in the squirrel monkey: as demonstrated by the retrograde axonal transport of tritiated horseradish peroxidase , 1977, Brain Research.

[106]  J. T. Weber,et al.  An autoradiographic analysis of the tecto-olivary projection in primates , 1976, Brain Research.

[107]  E. Bizzi,et al.  Mechanisms underlying achievement of final head position. , 1976, Journal of neurophysiology.

[108]  J. Simpson,et al.  Visual climbing fiber input to rabbit vestibulo-cerebellum: a source of direction-specific information. , 1974, Brain research.

[109]  A. H. Klopf,et al.  Brain Function and Adaptive Systems: A Heterostatic Theory , 1972 .

[110]  H. Kornhuber Motor functions of cerebellum and basal ganglia: the cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator , 1971, Kybernetik.

[111]  J. Albus A Theory of Cerebellar Function , 1971 .

[112]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[113]  J. Szentágothai,et al.  Participation of Golgi neuron processes in the cerebellar glomeruli: An electron microscope study , 1966, Experimental Brain Research.

[114]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[115]  R. Racine,et al.  Long-term potentiation in the interpositus and vestibular nuclei in the rat , 2004, Experimental Brain Research.

[116]  Mitsuo Kawato,et al.  A computational model of four regions of the cerebellum based on feedback-error learning , 2004, Biological Cybernetics.

[117]  M. Kawato,et al.  A hierarchical neural-network model for control and learning of voluntary movement , 2004, Biological Cybernetics.

[118]  C. Ghez,et al.  Task-related coding of stimulus and response in cat red nucleus , 2004, Experimental Brain Research.

[119]  J. Billard,et al.  Release of cerebellar inhibition by climbing fiber deafferentation , 2004, Experimental Brain Research.

[120]  E De Schutter,et al.  Coding in the granular layer of the cerebellum. , 2001, Progress in brain research.

[121]  Martha L. McCurdy,et al.  Discharge of primate magnocellular red nucleus neurons during reaching to grasp in different spatial locations , 2001, Experimental Brain Research.

[122]  Tevfik Selim Eskiizmirliler Modélisation de la fusion des informations sensori-motrices dans les voies cérébelleuses : application à la prédiction des cinétoses dans les trains pendulaires et au contrôle d'un actionneur mû par des muscles pneumatiques , 2000 .

[123]  E De Schutter,et al.  The function of cerebellar Golgi cells revisited. , 2000, Progress in brain research.

[124]  E. D’Angelo,et al.  Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. , 1999, Journal of neurophysiology.

[125]  G. Bock,et al.  Sensory guidance of movement , 1998 .

[126]  J. Rothwell Mechanical Properties of Muscles , 1994 .

[127]  M. Latash Control of human movement , 1993 .

[128]  Y. Padel [Magnocellular and parvocellular red nuclei. Anatomico-functional aspects and relations with the cerebellum and other nerve centres]. , 1993, Revue neurologique.

[129]  D. Wolpert,et al.  Is the cerebellum a smith predictor? , 1993, Journal of motor behavior.

[130]  R. Eckmiller Advanced neural computers , 1990 .

[131]  Richard S. Sutton,et al.  Time-Derivative Models of Pavlovian Reinforcement , 1990 .

[132]  P. Strata,et al.  Role of Inferior Olive in the Control of Eye Movements , 1989 .

[133]  L. Chelazzi,et al.  Spontaneous saccades in the pigmented rat following inferior olive lesion , 1989 .

[134]  F. Strumwasser,et al.  Comparative neurobiology : modes of communication in the nervous system , 1985 .

[135]  William F. Hughes,et al.  Functional Basis of Ocular Motility Disorders , 1984 .

[136]  D A Robinson,et al.  The use of control systems analysis in the neurophysiology of eye movements. , 1981, Annual review of neuroscience.

[137]  Y. Lamarre,et al.  The Inferior olivary nucleus : anatomy and physiology , 1980 .

[138]  O. Oscasson Functional organization of olivary projection to the cerebellar anterior lobe , 1980 .

[139]  E. Bizzi,et al.  Characteristics of motor programs underlying arm movements in monkeys. , 1979, Journal of neurophysiology.

[140]  A. M. Uttley,et al.  Information transmission in the nervous system , 1979 .

[141]  C. Noback Sensory Systems of Primates , 1978, Advances in Primatology.

[142]  J. T. Weber,et al.  Parallel Pathways Connecting the Primate Superior Colliculus with the Posterior Vermis , 1978 .

[143]  F. G. Worden,et al.  The neurosciences : third study program , 1974 .

[144]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[145]  G. Wolstenholme,et al.  The Spinal cord , 1953 .