Design of a Photoconductive Antenna for High Power Terahertz Generation

A photoconductive antenna (PCA) based on plasmonic contact electrode gratings for high power terahertz generation is proposed and experimentally verified in this paper. The designed nano-scale gratings allow for the excitation of surface plasmon waves, which greatly improves the intensity of the optical pump near the electrodes. Thus, the terahertz output power is increased. The proposed antenna is simulated and analyzed in high frequency structure simulator (HFSS). Terahertz time domain spectroscopy setup was used to characterize the proposed antenna. The measured result shows that compared with the conventional PCA, the proposed PCA based on plasmonic contact electrodes can offer 10.5 times growth of terahertz radiation power over 0.1-2 THz.

[1]  Shigeru Shimamoto,et al.  A Triple-Band Antenna Loaded with Reflector Surface for WLAN and 5G Applications , 2020, J. Commun..

[2]  Weili Zhang,et al.  All-dielectric nanograting for increasing terahertz radiation power of photoconductive antennas. , 2020, Optics express.

[3]  L. Shang,et al.  Numerical simulation of terahertz radiation in photoconductive antenna , 2020, Microwave and Optical Technology Letters.

[4]  Guangyou Fang,et al.  Study of Automatic Detection of Concealed Targets in Passive Terahertz Images for Intelligent Security Screening , 2019, IEEE Transactions on Terahertz Science and Technology.

[5]  M. Kolahdouz,et al.  Improvement of Terahertz Photoconductive Antenna using Optical Antenna Array of ZnO Nanorods , 2019, Scientific Reports.

[6]  S. Darbari,et al.  Design and Simulation of a Piezotronic GaN-Based Pulsed THz Emitter , 2018, Journal of Lightwave Technology.

[7]  M. Evans,et al.  Plasmonic Nanodisk Thin-Film Terahertz Photoconductive Antenna , 2018, IEEE Transactions on Terahertz Science and Technology.

[8]  S. Seo,et al.  Terahertz-Wave Characterization of LTG-GaAs Thin-Film Photoconductive Antenna , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Alexander Krasnok,et al.  Boosting Terahertz Photoconductive Antenna Performance with Optimised Plasmonic Nanostructures , 2017, Scientific Reports.

[10]  Christopher W. Berry,et al.  High-Power Terahertz Generation Using Large-Area Plasmonic Photoconductive Emitters , 2015, IEEE Transactions on Terahertz Science and Technology.

[11]  Christopher W. Berry,et al.  Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas , 2014 .

[12]  M. Jarrahi,et al.  Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes , 2012, Nature Communications.

[13]  ho-sung Lee Thermophysical Analysis of High Modulus Composite Materials for Space Vehicles , 2009 .

[14]  John H. Booske,et al.  Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa) , 2008 .

[15]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[16]  Xiang Zhang,et al.  Power scaling of large-aperture photoconducting antennas , 1991 .

[17]  Malathi Murugesan,et al.  Multimode Textile Array Antenna for Millimeter Wave Wearable Applications , 2022, J. Commun..

[18]  Saif Ali Mahdi Alwazzan,et al.  Designing and Simulating of Tunable Microstrip Patch Antenna for 5G Communications Utilising Graphene Material , 2022, J. Commun..

[19]  Hamzah M. Marhoon,et al.  Performance Enhancement of Microstrip Patch Antenna Based on Frequency Selective Surface Substrate for 5G Communication Applications , 2022, J. Commun..

[20]  Xiao Wei,et al.  Identification of Soybean Origin by Terahertz Spectroscopy and Chemometrics , 2020, IEEE Access.

[21]  Wei Zhang,et al.  WSDSBL Method for Wideband Channel Estimation in Millimeter-Wave MIMO Systems with Lens Antenna Array , 2020, J. Commun..

[22]  Efri Sandi,et al.  Ultra-wideband Microstrip Array Antenna for 5G Millimeter-wave Applications , 2020, J. Commun..