Model Checking for Action Abstraction

We endow action sets of transition systems with a partial order that expresses the degree of specialization of actions, and with an intuitive but flexible consistency predicate that constrains the extension of such orders with more specialized actions. We develop a satisfaction relation for such models and the µ-calculus. We prove that this satisfaction relation is sound for Thomsen's extended bisimulation as our refinement notion for models, even for consistent extensions of ordered action sets. We then demonstrate how this satisfaction relation can be reduced, fairly efficiently, to classical µ-calculus model checking. These results provide formal support for change management of models and their validation (e.g. in model-centric software development), and enable verification of concrete systems with respect to properties specified for abstract actions.

[1]  Patrice Godefroid,et al.  Generalized Model Checking: Reasoning about Partial State Spaces , 2000, CONCUR.

[2]  Kim G. Larsen,et al.  Equation solving using modal transition systems , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[3]  Amir Pnueli,et al.  Model checking and abstraction to the aid of parameterized systems (a survey) , 2004, Comput. Lang. Syst. Struct..

[4]  Orna Kupferman,et al.  Latticed Simulation Relations and Games , 2007, ATVA.

[5]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[6]  Thomas Wilke,et al.  Alternating tree automata, parity games, and modal {$\mu$}-calculus , 2001 .

[7]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[8]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[9]  Orna Kupferman,et al.  Lattice Automata , 2007, VMCAI.

[10]  David W. Binkley,et al.  Program slicing , 2008, 2008 Frontiers of Software Maintenance.

[11]  L. Aceto Action refinement in process algebras , 1992 .

[12]  Julian Bradfield Verifying Temporal Properties of Systems , 1992, Progress in Theoretical Computer Science.

[13]  Gordon D. Plotkin,et al.  A Framework for Intuitionistic Modal Logics , 1988, TARK.

[14]  Kousha Etessami,et al.  Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.

[15]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[16]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic , 2008, 25 Years of Model Checking.

[17]  Arend Rensink,et al.  Action Refinement , 1999, Handbook of Process Algebra.

[18]  J. M. Dunn,et al.  Modern Uses of Multiple-Valued Logic , 1977 .

[19]  Kim G. Larsen,et al.  A modal process logic , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[20]  Michael Huth,et al.  Ranked Predicate Abstraction for Branching Time: Complete, Incremental, and Precise , 2006, ATVA.

[21]  Bas Luttik,et al.  Split-2 bisimilarity has a finite axiomatization over CCS with Hennessy's merge , 2004, Log. Methods Comput. Sci..

[22]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[23]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[24]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[25]  Marsha Chechik,et al.  Multi-valued symbolic model-checking , 2003, TSEM.

[26]  Gordon Plotkin,et al.  A framework for intuitionistic modal logics: extended abstract , 1986 .

[27]  Kedar S. Namjoshi,et al.  The existence of finite abstractions for branching time model checking , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[28]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[29]  Ranko S. Lazic,et al.  A semantic study of data independence with applications to model checking , 1999 .

[30]  Ursula Goltz,et al.  Refinement of actions and equivalence notions for concurrent systems , 2001, Acta Informatica.

[31]  Martin Lange,et al.  Model Checking Games for Branching Time Logics , 2002, J. Log. Comput..

[32]  Marcin Jurdziński,et al.  Deciding the Winner in Parity Games is in UP \cap co-Up , 1998, Inf. Process. Lett..

[33]  Michael Huth,et al.  Refinement Sensitive Formal Semantics of State Machines With Persistent Choice , 2009, AVoCS.

[34]  Michael Huth,et al.  Labelled transition systems as a Stone space , 2004, Log. Methods Comput. Sci..