Prey size spectra and predator to prey size ratios of southern ocean salps

[1]  M. Pinkerton,et al.  Salp blooms drive strong increases in passive carbon export in the Southern Ocean , 2023, Nature Communications.

[2]  A. Thompson,et al.  Selective and differential feeding on marine prokaryotes by mucous mesh feeders. , 2023, Environmental microbiology.

[3]  B. Meyer,et al.  Selective feeding in Southern Ocean key grazers—diet composition of krill and salps , 2021, Communications Biology.

[4]  K. Selph Enumeration of marine microbial organisms by flow cytometry using near‐UV excitation of Hoechst 34580‐stained DNA , 2021, Limnology and Oceanography: Methods.

[5]  M. Stukel,et al.  Size‐specific grazing and competitive interactions between large salps and protistan grazers , 2021, Limnology and Oceanography.

[6]  M. Frischer,et al.  Selective feeding and linkages to the microbial food web by the doliolid Dolioletta gegenbauri , 2021, Limnology and Oceanography.

[7]  M. Stukel,et al.  Biology of Salpa thompsoni at the Chatham Rise, New Zealand: demography, growth, and diel vertical migration , 2020, Marine Biology.

[8]  R. Cowen,et al.  Contrasting fine‐scale distributional patterns of zooplankton driven by the formation of a diatom‐dominated thin layer , 2020, Limnology and Oceanography.

[9]  G. Yahel,et al.  Prey taxonomy rather than size determines salp diets , 2019, Limnology and Oceanography.

[10]  E. Linton,et al.  Preparation of Prokaryotic and Eukaryotic Organisms Using Chemical Drying for Morphological Analysis in Scanning Electron Microscopy (SEM). , 2019, Journal of visualized experiments : JoVE.

[11]  M. Frischer,et al.  Diet and trophic interactions of a circumglobally significant gelatinous marine zooplankter, Dolioletta gegenbauri (Uljanin, 1884) , 2018, Molecular ecology.

[12]  M. Landry,et al.  The unique ecological role of pyrosomes in the Eastern Tropical Pacific , 2018, Limnology and Oceanography.

[13]  M. Ohman,et al.  Large Phaeodaria in the twilight zone: Their role in the carbon cycle , 2018, Limnology and Oceanography.

[14]  F. Lombard,et al.  Mammoth grazers on the ocean's minuteness: a review of selective feeding using mucous meshes , 2018, Proceedings of the Royal Society B: Biological Sciences.

[15]  G. Williams,et al.  Gut contents and isotopic profiles of Salpa fusiformis and Thalia democratica , 2017 .

[16]  Anthony J Richardson,et al.  Rethinking the Role of Salps in the Ocean. , 2016, Trends in ecology & evolution.

[17]  D. Stevens,et al.  Diets of deepwater oreos (Oreosomatidae) and orange roughy Hoplostethus atlanticus. , 2016, Journal of fish biology.

[18]  S. Chiswell,et al.  Annual cycles of deep‐ocean biogeochemical export fluxes in subtropical and subantarctic waters, Southwest Pacific Ocean , 2016 .

[19]  K. Furuya,et al.  In situ observations of a doliolid bloom in a warm water filament using a video plankton recorder: Bloom development, fate, and effect on biogeochemical cycles and planktonic food webs , 2015 .

[20]  M. Landry,et al.  Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem , 2015 .

[21]  I. Peeken,et al.  Molecular analyses of gut contents: elucidating the feeding of co-occurring salps in the Lazarev Sea from a different perspective , 2014, Antarctic Science.

[22]  David M. Karl,et al.  Picophytoplankton biomass distribution in the global ocean , 2012 .

[23]  D. Deibel,et al.  A review of the life cycles and life-history adaptations of pelagic tunicates to environmental conditions , 2012 .

[24]  A. Aguilar,et al.  Massive Consumption of Gelatinous Plankton by Mediterranean Apex Predators , 2012, PloS one.

[25]  P. Horn,et al.  A comparison of the diets of silver (Seriolella punctata) and white (Seriolella caerulea) warehou , 2011 .

[26]  W. Hagen,et al.  Salps in the Lazarev Sea, Southern Ocean: I. Feeding dynamics , 2011 .

[27]  E. Yang,et al.  Biomass, size structure and depth distributions of the microbial community in the eastern equatorial Pacific , 2011 .

[28]  Peter Franks,et al.  Plankton community properties determined by nutrients and size-selective feeding , 2010 .

[29]  L. Madin,et al.  A comparison of filtration rates among pelagic tunicates using kinematic measurements , 2010 .

[30]  Simon Jennings,et al.  Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. , 2010, Ecology.

[31]  Seung Won Jung,et al.  Development of a rapid and effective method for preparing delicate dinoflagellates for scanning electron microscopy , 2010, Journal of Applied Phycology.

[32]  M. Ohman,et al.  Lagrangian studies of phytoplankton growth and grazing relationships in a coastal upwelling ecosystem off Southern California , 2009 .

[33]  S. Sokolov,et al.  Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths , 2009 .

[34]  G. Hosie,et al.  Abundance and grazing impacts of krill, salps and copepods along the 140°E meridian in the Southern Ocean during summer , 2008, Antarctic Science.

[35]  P. Wiebe,et al.  Periodic swarms of the salp Salpa aspera in the Slope Water off the NE United States: Biovolume, vertical migration, grazing, and vertical flux , 2006 .

[36]  L. Madin,et al.  Zooplankton feeding ecology: clearance and ingestion rates of the salps Thalia democratica, Cyclosalpa affinis and Salpa cylindrica on naturally occurring particles in the Mid-Atlantic Bight , 2004 .

[37]  H. Stibor,et al.  Feeding selectivities of the marine cladocerans Penilia avirostris, Podon intermedius and Evadne nordmanni , 2004 .

[38]  Michael R. Landry,et al.  Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems , 2004 .

[39]  A. Madirolas,et al.  Feeding on survival-food: gelatinous plankton as a source of food for anchovies , 2001, Hydrobiologia.

[40]  E. Sherr,et al.  Significance of predation by protists in aquatic microbial food webs , 2004, Antonie van Leeuwenhoek.

[41]  Q. Bone,et al.  Tunicate feeding filters , 2003, Journal of the Marine Biological Association of the United Kingdom.

[42]  P. Sutton The Southland Current: A subantarctic current , 2003 .

[43]  G. Pitcher,et al.  A simple and rapid scanning electron microscope preparative technique for delicate “gymnodinioid” dinoflagellates , 2002, Microscopy research and technique.

[44]  Simon Jennings,et al.  Use of size-based production and stable isotope analyses to predict trophic transfer efficiencies and predator-prey body mass ratios in food webs , 2002 .

[45]  A. Tsuda,et al.  Feeding of the pelagic tunicate, Salpa thompsoni, on flagellates and size-fractionated chlorophyll particles , 2001 .

[46]  A. Tsuda,et al.  Diel vertical migration of the tunicate Salpa thompsoni in the Southern Ocean during summer , 2001, Polar Biology.

[47]  Q. Bone,et al.  The endostyle and the feeding filter in salps (Tunicata) , 2000, Journal of the Marine Biological Association of the United Kingdom.

[48]  Susanne Menden-Deuer,et al.  Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton , 2000 .

[49]  L. Naustvoll Prey size spectra and food preferences in thecate heterotrophic dinoflagellates , 2000 .

[50]  T. Bott,et al.  The effects of formalin and Lugol's iodine solution on protozoal cell volume , 2000 .

[51]  David C. Smith,et al.  Microbial food web structure in the Arabian Sea: a US JGOFS study , 2000 .

[52]  K. Currie,et al.  Surface water carbon dioxide in the waters associated with the subtropical convergence, east of New Zealand , 1998 .

[53]  Charles S. Yentsch,et al.  An imaging-in-flow system for automated analysis of marine microplankton , 1998 .

[54]  R. Perissinotto,et al.  Contribution of salps to carbon flux of marginal ice zone of the Lazarev Sea, southern ocean , 1998 .

[55]  L. Madin,et al.  Determination of the filter-feeding rates of salps (Tunicata, Thaliacea) , 1995 .

[56]  P. K. Bjørnsen,et al.  The size ratio between planktonic predators and their prey , 1994 .

[57]  L. Madin,et al.  Feeding, metabolism. and growth of Cyclosalpa bakeri in the subarctic Pacific , 1992 .

[58]  L. Madin,et al.  Particle retention efficiency of salps , 1992 .

[59]  Paul G. Falkowski,et al.  Primary Productivity and Biogeochemical Cycles in the Sea , 1992 .

[60]  Q. Bone,et al.  On the pharyngeal feeding filter of the salp Pegea confoederata (Tunicata : Thaliacea) , 1991 .

[61]  A. Alldredge,et al.  Feeding rates of the doliolid, Dolioletta gegenbauri , on diatoms and bacteria , 1991 .

[62]  E. Sherr,et al.  Clearance rates of < 6 µm fluorescently labeled algae (FLA) by estuanne protozoa. potential grazing impact of flagellates and ciliates , 1991 .

[63]  D. Caron,et al.  Composition and degradation of salp fecal pellets: Implications for vertical flux in oceanic environments , 1989 .

[64]  D. Stoecker,et al.  An experimentally determined carbon : volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters , 1989 .

[65]  D. Stoecker,et al.  Effects of Fixation on Cell Volume of Marine Planktonic Protozoa , 1989, Applied and environmental microbiology.

[66]  E. Sherr,et al.  Role of microbes in pelagic food webs: a revised concept , 1988 .

[67]  M. Silver,et al.  Primary production, sinking fluxes and the microbial food web , 1988 .

[68]  U. Bathmann Mass occurrence of Salpa fusiformis in the spring of 1984 off Ireland: implications for sedimentation processes , 1988 .

[69]  T. Fenchel,et al.  Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists , 1987 .

[70]  R. W. Gilmer,et al.  The response of the salp, Pegea confoederata, to high levels of particulate material: Starvation in the midst of plenty1 , 1986 .

[71]  R. A. Heath A review of the physical oceanography of the seas around New Zealand ― 1982 , 1985 .

[72]  M. M. Mullin In situ measurement of filtering rates of the salp, Thalia democratica, on phytoplankton and bacteria , 1983 .

[73]  L. Madin,et al.  Pelagic Tunicates: Unique Herbivores in the Marine Plankton , 1982 .

[74]  L. Madin Production, composition and sedimentation of salp fecal pellets in oceanic waters , 1982 .

[75]  J. Purcell Dietary composition and diel feeding patterns of epipelagic siphonophores , 1981 .

[76]  M. Silver,et al.  Differential feeding and fecal pellet composition of salps and pteropods, and the possible origin of the deep-water flora and olive-green “Cells” , 1981 .

[77]  D. Kamykowski,et al.  Geographic variations in the relationship between silicic acid and nitrate in the South Pacific Ocean , 1981 .

[78]  G. Harbison,et al.  The filter‐feeding rates and particle retention efficiencies of three species of Cyclosalpa (Tunicata, Thaliacea)1 , 1979 .

[79]  R. W. Sheldon,et al.  Structure of Pelagic Food Chain and Relationship Between Plankton and Fish Production , 1977 .

[80]  R. W. Gilmer,et al.  The feeding rates of the pelagic tunicate Pegea confederata and two other salps1 , 1976 .

[81]  M. Silver The habitat of Salpa fusiformis in the California Current as defined by indicator assemblages1 , 1975 .

[82]  Laurence P. Madin,et al.  Field observations on the feeding behavior of salps (Tunicata: Thaliacea) , 1974 .

[83]  Raymond L. Lindeman The trophic-dynamic aspect of ecology , 1942 .