Quantum probability in decision making from quantum information representation of neuronal states

The recent wave of interest to modeling the process of decision making with the aid of the quantum formalism gives rise to the following question: ‘How can neurons generate quantum-like statistical data?’ (There is a plenty of such data in cognitive psychology and social science). Our model is based on quantum-like representation of uncertainty in generation of action potentials. This uncertainty is a consequence of complexity of electrochemical processes in the brain; in particular, uncertainty of triggering an action potential by the membrane potential. Quantum information state spaces can be considered as extensions of classical information spaces corresponding to neural codes; e.g., 0/1, quiescent/firing neural code. The key point is that processing of information by the brain involves superpositions of such states. Another key point is that a neuronal group performing some psychological function F is an open quantum system. It interacts with the surrounding electrochemical environment. The process of decision making is described as decoherence in the basis of eigenstates of F. A decision state is a steady state. This is a linear representation of complex nonlinear dynamics of electrochemical states. Linearity guarantees exponentially fast convergence to the decision state.

[1]  G Leng,et al.  Spike propagation and conduction failure in the rat neural lobe. , 1988, The Journal of physiology.

[2]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure , 2010 .

[3]  Giacomo Mauro D'Ariano,et al.  Operational Axioms for Quantum Mechanics , 2006, quant-ph/0611094.

[4]  Ehtibar N. Dzhafarov,et al.  On Selective Influences, Marginal Selectivity, and Bell/CHSH Inequalities , 2012, Top. Cogn. Sci..

[5]  Richard M. Shiffrin,et al.  Context effects produced by question orders reveal quantum nature of human judgments , 2014, Proceedings of the National Academy of Sciences.

[6]  Abir U Igamberdiev,et al.  The quantum basis of spatiotemporality in perception and consciousness. , 2017, Progress in biophysics and molecular biology.

[7]  E. Schrödinger What is life? : the physical aspect of the living cell , 1944 .

[8]  Fabio Bagarello,et al.  Quantum Dynamics for Classical Systems: With Applications of the Number Operator , 2012 .

[9]  Sudeept Mohan,et al.  STATE , 2016, Intell. Serv. Robotics.

[10]  Peter D. Kvam,et al.  Neural implementation of operations used in quantum cognition. , 2017, Progress in biophysics and molecular biology.

[11]  Stuart R. Hameroff,et al.  QUANTUM COHERENCE IN MICROTUBULES: A NEURAL BASIS FOR EMERGENT CONSCIOUSNESS? 1 , 1994 .

[12]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[13]  R. Kass,et al.  Multiple neural spike train data analysis: state-of-the-art and future challenges , 2004, Nature Neuroscience.

[14]  Andrei Khrennikov,et al.  A model of differentiation in quantum bioinformatics. , 2017, Progress in biophysics and molecular biology.

[15]  A. Khrennikov,et al.  Quantum Social Science , 2013 .

[16]  Hans J. Briegel,et al.  On creative machines and the physical origins of freedom , 2012, Scientific Reports.

[17]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[18]  H. Stowell The emperor's new mind R. Penrose, Oxford University Press, New York (1989) 466 pp. $24.95 , 1990, Neuroscience.

[19]  Andrei Khrennikov,et al.  Quantum-like model of processing of information in the brain based on classical electromagnetic field , 2010, Biosyst..

[20]  H. Atmanspacher,et al.  Complementarity in Classical Dynamical Systems , 2006 .

[21]  Masanao Ozawa Quantum perfect correlations , 2006 .

[22]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[23]  B. M. Fulk MATH , 1992 .

[24]  R. Ingarden,et al.  Information Dynamics and Open Systems: Classical and Quantum Approach , 1997 .

[25]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[26]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[27]  Harald Atmanspacher,et al.  Determinism Is Ontic, Determinability is Epistemic , 2001 .

[28]  Jennifer S Trueblood,et al.  A quantum theoretical explanation for probability judgment errors. , 2011, Psychological review.

[29]  安藤 広志,et al.  20世紀の名著名論:David Marr:Vision:a Computational Investigation into the Human Representation and Processing of Visual Information , 2005 .

[30]  Armen E. Allahverdyan,et al.  72 57 v 1 [ qu an tph ] 2 8 M ar 2 01 3 Statistical theory of ideal quantum measurement processes , 2014 .

[31]  J. Tenenbaum,et al.  Probabilistic models of cognition: exploring representations and inductive biases , 2010, Trends in Cognitive Sciences.

[32]  M. Genovese Research on hidden variable theories: A review of recent progresses , 2005, quant-ph/0701071.

[33]  Xu Fuming,et al.  Conjunction Fallacy in Probability Judgment , 2015 .

[34]  Zayd M. Khaliq,et al.  Axonal Propagation of Simple and Complex Spikes in Cerebellar Purkinje Neurons , 2005, The Journal of Neuroscience.

[35]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[36]  N. David Mermin,et al.  Boojums All The Way Through , 1990 .

[37]  Yoshiharu Tanaka,et al.  Foundational Problems of Quantum Mechanics , 2015 .

[38]  G. Ryle,et al.  The concept of mind. , 2004, The International journal of psycho-analysis.

[39]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[40]  Arkady Plotnitsky,et al.  Are quantum-mechanical-like models possible, or necessary, outside quantum physics? , 2014 .

[41]  Masanori Ohya,et al.  A quantum-like model of selection behavior , 2017, 1705.08536.

[42]  Fabio Bagarello,et al.  Quantum dynamics for classical systems , 2012 .

[43]  J. Busemeyer,et al.  A quantum probability explanation for violations of ‘rational’ decision theory , 2009, Proceedings of the Royal Society B: Biological Sciences.

[44]  A. Tversky,et al.  Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment , 1983 .

[45]  Yoshiharu Tanaka,et al.  Quantum Adaptivity in Biology: From Genetics to Cognition , 2015, Springer Netherlands.

[46]  Masanao Ozawa,et al.  Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory , 2015, New Generation Computing.

[47]  Emmanuel M. Pothos,et al.  State Entropy and Differentiation Phenomenon , 2018, Entropy.

[48]  Emmanuel M. Pothos,et al.  Quantum like modeling of decision making: Quantifying uncertainty with the aid of Heisenberg–Robertson inequality , 2018, Journal of Mathematical Psychology.

[49]  Caslav Brukner,et al.  OPERATIONALLY INVARIANT INFORMATION IN QUANTUM MEASUREMENTS , 1999 .

[50]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision , 2012 .

[51]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure: From Psychology to Finance , 2010 .

[52]  Emmanuel Haven,et al.  Statistical and subjective interpretations of probability in quantum-like models of cognition and decision making , 2016 .

[53]  Andrei Khrennikov Linear representations of probabilistic transformations induced by context transitions , 2001 .

[54]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[55]  C. Fuchs,et al.  A Quantum-Bayesian Route to Quantum-State Space , 2009, 0912.4252.