Prediction of drug-target binding affinity based on deep learning models

[1]  Weiqi Xia,et al.  AnnoPRO: a strategy for protein function annotation based on multi-scale protein representation and a hybrid deep learning of dual-path encoding , 2024, Genome biology.

[2]  Esther Heid,et al.  Chemprop: A Machine Learning Package for Chemical Property Prediction , 2023, J. Chem. Inf. Model..

[3]  Chunping Ouyang,et al.  Multimodal contrastive representation learning for drug-target binding affinity prediction. , 2023, Methods.

[4]  Yongchao Luo,et al.  A task-specific encoding algorithm for RNAs and RNA-associated interactions based on convolutional autoencoder , 2023, Nucleic acids research.

[5]  Zhuguo Li,et al.  Drug-target binding affinity prediction using message passing neural network and self supervised learning , 2023, BMC Genomics.

[6]  Ying Zhou,et al.  TTD: Therapeutic Target Database describing target druggability information , 2023, Nucleic acids research.

[7]  Fengcheng Li,et al.  A Transformer-Based Ensemble Framework for the Prediction of Protein–Protein Interaction Sites , 2023, Research.

[8]  Yi Li,et al.  MMDTA: A Multimodal Deep Model for Drug-Target Affinity with a Hybrid Fusion Strategy , 2023, J. Chem. Inf. Model..

[9]  Qiming Fu,et al.  TrGPCR:GPCR-ligand Binding Affinity Predicting based on Dynamic Deep Transfer Learning. , 2023, IEEE journal of biomedical and health informatics.

[10]  A. Weiße,et al.  From Proteins to Ligands: Decoding Deep Learning Methods for Binding Affinity Prediction , 2023, bioRxiv.

[11]  Kelin Xia,et al.  Molecular geometric deep learning , 2023, Cell reports methods.

[12]  Guanxing Chen,et al.  NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug–target binding affinity prediction , 2023, Bioinformatics.

[13]  Jonathan M Stokes,et al.  Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii , 2023, Nature Chemical Biology.

[14]  Didier Barradas-Bautista,et al.  The LightDock Server: Artificial Intelligence-powered modeling of macromolecular interactions , 2023, Nucleic Acids Res..

[15]  Zhenhua Feng,et al.  MFR-DTA: a multi-functional and robust model for predicting drug–target binding affinity and region , 2023, Bioinform..

[16]  Amalia Putri Lubis,et al.  In Silico Study of Entry Inhibitor from Moringa oleifera Bioactive Compounds against SARS-CoV-2 Infection , 2022, Pharmacognosy Journal.

[17]  Yuzong Chen,et al.  DrugMAP: molecular atlas and pharma-information of all drugs , 2022, Nucleic Acids Res..

[18]  Haoyang Chen,et al.  GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information , 2022, Comput. Biol. Medicine.

[19]  Jianhui Chen,et al.  GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery , 2022, BMC Bioinformatics.

[20]  Yaohang Li,et al.  AttentionDTA: Drug–Target Binding Affinity Prediction by Sequence-Based Deep Learning With Attention Mechanism , 2022, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[21]  A. Baidya,et al.  Deep learning tools for advancing drug discovery and development , 2022, 3 Biotech.

[22]  Maha A. Thafar,et al.  Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning , 2022, Scientific Reports.

[23]  William J. Godinez,et al.  Design of potent antimalarials with generative chemistry , 2022, Nature Machine Intelligence.

[24]  Lu Zhao,et al.  MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction , 2022, Chemical science.

[25]  A. Ansori,et al.  Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach , 2022, Journal of Pharmacy & Pharmacognosy Research.

[26]  Jiarui Lu,et al.  EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction , 2021, Biomolecules.

[27]  Mansoor Zolghadri Jahromi,et al.  Using drug-drug and protein-protein similarities as feature vector for drug-target binding prediction , 2021 .

[28]  P. Venkatesh,et al.  In silico screening of antiviral compounds from Moringa oleifera for inhibition of SARS-CoV-2 main protease , 2021, Current Research in Green and Sustainable Chemistry.

[29]  Zhiqiang Wei,et al.  SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network , 2021, International journal of molecular sciences.

[30]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[31]  A. Ansori,et al.  Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins , 2021, Journal of Pharmacy & Pharmacognosy Research.

[32]  Hua Wu,et al.  Geometry-enhanced molecular representation learning for property prediction , 2021, Nature Machine Intelligence.

[33]  Weihe Zhong,et al.  ML-DTI: Mutual Learning Mechanism for Interpretable Drug-Target Interaction Prediction. , 2021, The journal of physical chemistry letters.

[34]  Dezhong Peng,et al.  Deep drug-target binding affinity prediction with multiple attention blocks , 2021, Briefings Bioinform..

[35]  F. Hu,et al.  Multi-PLI: interpretable multi‐task deep learning model for unifying protein–ligand interaction datasets , 2021, Journal of Cheminformatics.

[36]  Yaohang Li,et al.  DeepDTAF: a deep learning method to predict protein-ligand binding affinity , 2021, Briefings Bioinform..

[37]  Lei Zuo,et al.  GanDTI: A multi-task neural network for drug-target interaction prediction , 2021, Comput. Biol. Chem..

[38]  Xianchao Pan,et al.  An evaluation of combined strategies for improving the performance of molecular docking , 2021, J. Bioinform. Comput. Biol..

[39]  Jimeng Sun,et al.  DeepPurpose: a deep learning library for drug–target interaction prediction , 2020, Bioinform..

[40]  Lukasz Kurgan,et al.  PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictor selection. , 2020, Bioinformatics.

[41]  A S Rifaioglu,et al.  MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery , 2020, Bioinform..

[42]  Truyen Tran,et al.  GEFA: Early Fusion Approach in Drug-Target Affinity Prediction , 2020, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[43]  Josef Kittler,et al.  Self-grouping Convolutional Neural Networks , 2020, Neural Networks.

[44]  Xiaofeng Wang,et al.  Drug–target affinity prediction using graph neural network and contact maps , 2020, RSC advances.

[45]  Parvin Razzaghi,et al.  DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks , 2020, Bioinform..

[46]  Xianfang Wang,et al.  Dipeptide Frequency of Word Frequency and Graph Convolutional Networks for DTA Prediction , 2020, Frontiers in Bioengineering and Biotechnology.

[47]  Dan Zhao,et al.  MONN: A Multi-objective Neural Network for Predicting Compound-Protein Interactions and Affinities , 2020, Cell Systems.

[48]  Emma J. Chory,et al.  A Deep Learning Approach to Antibiotic Discovery , 2020, Cell.

[49]  Yang Liu,et al.  GANsDTA: Predicting Drug-Target Binding Affinity Using GANs , 2020, Frontiers in Genetics.

[50]  Wenyu Chen,et al.  Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting. , 2019, Analytical biochemistry.

[51]  Feng Zhu,et al.  Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning , 2019, Briefings Bioinform..

[52]  Mirco Michel,et al.  PconsC4: fast, accurate and hassle-free contact predictions , 2019, Bioinform..

[53]  S. Iqbal,et al.  Exploration of Antioxidant Activities of Potentially Bioactive Compounds in Trianthema portulacastrum Herb: Chemical Identification and Quantification by GC-MS and HPLC , 2019, ChemistrySelect.

[54]  Dmitry Vetrov,et al.  Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery. , 2018, Molecular pharmaceutics.

[55]  Di Wu,et al.  DeepAffinity: Interpretable Deep Learning of Compound-Protein Affinity through Unified Recurrent and Convolutional Neural Networks , 2018, bioRxiv.

[56]  Maciej Eder,et al.  Linguistic measures of chemical diversity and the “keywords” of molecular collections , 2018, Scientific Reports.

[57]  Langchong He,et al.  Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction , 2018, Journal of pharmaceutical analysis.

[58]  Arzucan Özgür,et al.  DeepDTA: deep drug–target binding affinity prediction , 2018, Bioinform..

[59]  John P. Overington,et al.  Drug Target Commons: A Community Effort to Build a Consensus Knowledge Base for Drug-Target Interactions , 2017, Cell chemical biology.

[60]  Juho Rousu,et al.  Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors , 2017, PLoS Comput. Biol..

[61]  Luhua Lai,et al.  Sequence-based prediction of protein protein interaction using a deep-learning algorithm , 2017, BMC Bioinformatics.

[62]  Artem Cherkasov,et al.  SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines , 2017, Journal of Cheminformatics.

[63]  Zhihai Liu,et al.  Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions. , 2017, Accounts of chemical research.

[64]  Wei Li,et al.  RaptorX-Property: a web server for protein structure property prediction , 2016, Nucleic Acids Res..

[65]  W. Tao,et al.  Pred-binding: large-scale protein–ligand binding affinity prediction , 2016, Journal of enzyme inhibition and medicinal chemistry.

[66]  Isidro Cortes-Ciriano,et al.  Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel , 2015, Bioinform..

[67]  Yu Wang,et al.  A comparative study of family-specific protein–ligand complex affinity prediction based on random forest approach , 2015, Journal of Computer-Aided Molecular Design.

[68]  Hao Ding,et al.  Similarity-based machine learning methods for predicting drug-target interactions: a brief review , 2014, Briefings Bioinform..

[69]  T. Aittokallio,et al.  Toward more realistic drug–target interaction predictions , 2014, Briefings Bioinform..

[70]  Tao Xu,et al.  Making Sense of Large-Scale Kinase Inhibitor Bioactivity Data Sets: A Comparative and Integrative Analysis , 2014, J. Chem. Inf. Model..

[71]  A. Caflisch,et al.  Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. , 2013, Bioorganic & medicinal chemistry letters.

[72]  Kunal Roy,et al.  Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: Emphasis on scaling of response data , 2013, J. Comput. Chem..

[73]  Mindy I. Davis,et al.  Comprehensive analysis of kinase inhibitor selectivity , 2011, Nature Biotechnology.

[74]  Elena Marchiori,et al.  Gaussian interaction profile kernels for predicting drug-target interaction , 2011, Bioinform..

[75]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[76]  P. Hajduk,et al.  Navigating the kinome. , 2011, Nature chemical biology.

[77]  Xue-wen Chen,et al.  On Position-Specific Scoring Matrix for Protein Function Prediction , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[78]  S. Rees,et al.  Principles of early drug discovery , 2011, British journal of pharmacology.

[79]  Lingle Wang,et al.  Ligand binding to protein-binding pockets with wet and dry regions , 2011, Proceedings of the National Academy of Sciences.

[80]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[81]  A. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[82]  Jacob Benesty,et al.  Noise Reduction in Speech Processing , 2009 .

[83]  Regina Z. Cer,et al.  IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding , 2009, Nucleic Acids Res..

[84]  Michael Entzeroth,et al.  Overview of High‐Throughput Screening , 2009, Current protocols in pharmacology.

[85]  Juwen Shen,et al.  Predicting protein–protein interactions based only on sequences information , 2007, Proceedings of the National Academy of Sciences.

[86]  Xin Wen,et al.  BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities , 2006, Nucleic Acids Res..

[87]  H. M. Srivastava,et al.  A new family of integral transforms and their applications , 2006 .

[88]  Peteris Prusis,et al.  Improved approach for proteochemometrics modeling: application to organic compound - amine G protein-coupled receptor interactions , 2005, Bioinform..

[89]  M. Gonen,et al.  Concordance probability and discriminatory power in proportional hazards regression , 2005 .

[90]  Pierre Baldi,et al.  SCRATCH: a protein structure and structural feature prediction server , 2005, Nucleic Acids Res..

[91]  Jeffrey D. Lewis,et al.  Predicting Inhibitory Drug—Drug Interactions and Evaluating Drug Interaction Reports Using Inhibition Constants , 2005, The Annals of pharmacotherapy.

[92]  T. Lundstedt,et al.  Proteochemometrics modeling of the interaction of amine G-protein coupled receptors with a diverse set of ligands. , 2002, Molecular pharmacology.

[93]  Todd J. A. Ewing,et al.  DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases , 2001, J. Comput. Aided Mol. Des..

[94]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[95]  R. Bhushan,et al.  TLC Resolution of Amino Acids in a New Solvent and Effect of Alkaline Earth Metals , 1987 .

[96]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[97]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[98]  OUP accepted manuscript , 2021, Briefings In Bioinformatics.