In vivo MR micro imaging with conventional radiofrequency coils cooled to 77 degrees K.

Cryogenically cooled conventional surface coils are shown to provide significant signal-to-noise ratio (SNR) gains for MR micro imaging of tissue structure in vivo. Measurements are described which employ a simple, all-polyvinyl chloride (PVC) vacuum dewar capable of maintaining a bath of liquid nitrogen around the coil, within 5 mm of the tissue to be imaged. Images acquired in vivo at 64 MHz with a 2-cm diameter copper coil cooled to 77 K demonstrated a gain in SNR of approximately 2.7 +/- 0.3 relative to those obtained with the same coil at room temperature under otherwise identical conditions. This increase is consistent with the reduction in coil resistance and the minor contribution to overall resistance from the imaging object. The performance of the coil is illustrated with images from the human finger and rabbit eye and potential applications are discussed.