GABAergic and pyramidal neurons of deep cortical layers directly receive and differently integrate callosal input.

We studied the involvement of deep cortical layer neurons in processing callosal information in the rat. We observed with electron microscopy that both parvalbumin (PV)-labeled profiles and unlabeled dendritic spines of deep cortical layer neurons receive synapses from the contralateral hemisphere. Stimulation of callosal fibers elicited monosynaptic excitatory postsynaptic currents in both layer VI pyramidal neurons and gamma-aminobutyric acidergic (GABAergic) interneurons immunopositive for the vesicular GABA transporter and PV. Pyramidal cells had intrinsic electrophysiological properties and synaptic responses with slow kinetics and a robust N-metyhl-D-aspartate (NMDA) component. In contrast, GABAergic interneurons had intrinsic membrane properties and synaptic responses with faster kinetics and a less pronounced NMDA component. Consistent with these results, the temporal integration of callosal input was effective over a significantly longer time window in pyramidal neurons compared with GABAergic interneurons. Interestingly, callosal stimulation did not evoke feedforward inhibition in all GABAergic interneurons and in the majority of pyramidal neurons tested. Furthermore, retrogradely labeled layer VI pyramidal neurons of the contralateral cortex responded monosynaptically to callosal stimulation, suggesting interconnectivity between callosally projecting neurons. The data show that pyramidal neurons and GABAergic interneurons of deep cortical layers receive interhemispheric information directly and have properties supporting their distinct roles.

[1]  P. B. Cipolloni,et al.  The termination of callosal fibres in the auditory cortex of the rat. A combined Golgi-electron microscope and degeneration study , 1983, Journal of neurocytology.

[2]  B. Sakmann,et al.  Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. , 1993, The Journal of physiology.

[3]  Shaul Hestrin,et al.  Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons , 1993, Neuron.

[4]  M. Deschenes,et al.  Projections to layer VI of the posteromedial barrel field in the rat: a reappraisal of the role of corticothalamic pathways. , 1998, Cerebral cortex.

[5]  M. Fagiolini,et al.  Specific GABAA Circuits for Visual Cortical Plasticity , 2004, Science.

[6]  E. White,et al.  Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: Emphasis on intrinsic connections , 1991, The Journal of comparative neurology.

[7]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[8]  M. Celio,et al.  Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. , 1986, Science.

[9]  B. Connors,et al.  Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. , 2002, Journal of neurophysiology.

[10]  M. Deschenes,et al.  Intracortical Axonal Projections of Lamina VI Cells of the Primary Somatosensory Cortex in the Rat: A Single-Cell Labeling Study , 1997, The Journal of Neuroscience.

[11]  P. Goldman-Rakic,et al.  Destruction and Creation of Spatial Tuning by Disinhibition: GABAA Blockade of Prefrontal Cortical Neurons Engaged by Working Memory , 2000, The Journal of Neuroscience.

[12]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[13]  A. Peters,et al.  Sensory-Motor Areas and Aspects of Cortical Connectivity , 1986, Cerebral Cortex.

[14]  A. Zaitsev,et al.  Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. , 2006, Cerebral cortex.

[15]  R. Nicoll,et al.  Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. , 1990, The Journal of physiology.

[16]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[17]  G. Buzsáki Feed-forward inhibition in the hippocampal formation , 1984, Progress in Neurobiology.

[18]  M. Steriade,et al.  Electrophysiological properties and input-output organization of callosal neurons in cat association cortex. , 2003, Journal of neurophysiology.

[19]  M. Calford,et al.  Interhemispheric modulation of somatosensory receptive fields: evidence for plasticity in primary somatosensory cortex. , 1996, Cerebral cortex.

[20]  Alex M Thomson,et al.  Layer 6 cortico-thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. , 2006, Cerebral cortex.

[21]  A. Thomson A magnesium‐sensitive post‐synaptic potential in rat cerebral cortex resembles neuronal responses to N‐methylaspartate. , 1986, The Journal of physiology.

[22]  H. Swadlow Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. , 2003, Cerebral cortex.

[23]  Y. Kawaguchi Receptor subtypes involved in callosally-induced postsynaptic potentials in rat frontal agranular cortex in vitro , 2005, Experimental Brain Research.

[24]  L. C. Katz,et al.  Green fluorescent latex microspheres: A new retrograde tracer , 1990, Neuroscience.

[25]  T. Hicks,et al.  Neuropharmacological properties of electrophysiologically identified, visually responsive neurones of the posterior lateral suprasylvian area , 1983, Experimental Brain Research.

[26]  O. Devinsky,et al.  Callosal lesions and behavior: history and modern concepts , 2003, Epilepsy & Behavior.

[27]  B. Vogt,et al.  Responses of cortical neurons to stimulation of corpus callosum in vitro. , 1982, Journal of neurophysiology.

[28]  Alan Peters,et al.  Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat , 1981, The Journal of comparative neurology.

[29]  Rafael Yuste,et al.  On the electrical function of dendritic spines , 2004, Trends in Neurosciences.

[30]  M. C. Angulo,et al.  Developmental Synaptic Changes Increase the Range of Integrative Capabilities of an Identified Excitatory Neocortical Connection , 1999, The Journal of Neuroscience.

[31]  Peter Jonas,et al.  The Time Course of Signaling at Central Glutamatergic Synapses. , 2000, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[32]  M. Gazzaniga Forty-five years of split-brain research and still going strong , 2005, Nature Reviews Neuroscience.

[33]  M. Fabri,et al.  Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas , 2004, Neuroscience.

[34]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[35]  B. Connors,et al.  Properties of excitatory synaptic events in neurons of primary somatosensory cortex of neonatal rats. , 1995, Cerebral cortex.

[36]  Y. Gonchar,et al.  GABA-immunopositive neurons in rat neocortex with contralateral projections to S-I , 1995, Brain Research.

[37]  K. Toyama,et al.  An intracellular study of neuronal organization in the visual cortex , 2004, Experimental Brain Research.

[38]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[39]  R. Yuste,et al.  Morphological and physiological characterization of layer VI corticofugal neurons of mouse primary visual cortex. , 2003, Journal of neurophysiology.

[40]  R. Rhoades,et al.  Reducing contralateral SI activity reveals hindlimb receptive fields in the SI forelimb-stump representation of neonatally amputated rats. , 2005, Journal of neurophysiology.

[41]  L. Merabet,et al.  The plastic human brain cortex. , 2005, Annual review of neuroscience.

[42]  Bogen Je Mental duality in the intact brain. , 1986 .

[43]  Urs Gerber,et al.  A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit , 2004, Nature.

[44]  Alberto Bacci,et al.  A Developmental Switch of AMPA Receptor Subunits in Neocortical Pyramidal Neurons , 2002, The Journal of Neuroscience.

[45]  John R Huguenard,et al.  Pathway-Specific Differences in Subunit Composition of Synaptic NMDA Receptors on Pyramidal Neurons in Neocortex , 2003, The Journal of Neuroscience.

[46]  J. Winer,et al.  Layer VI in cat primary auditory cortex: Golgi study and sublaminar origins of projection neurons , 1999, The Journal of comparative neurology.

[47]  F. Conti,et al.  The neurotransmitters and postsynaptic actions of callosally projecting neurons , 1994, Behavioural Brain Research.

[48]  S. Sesack,et al.  Callosal terminals in the rat prefrontal cortex: Synaptic targets and association with GABA‐immunoreactive structures , 1998, Synapse.

[49]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[50]  H. Killackey,et al.  Organization of corticocortical connections in the parietal cortex of the rat , 1978, The Journal of comparative neurology.

[51]  Alex M Thomson,et al.  Excitatory connections made by presynaptic cortico-cortical pyramidal cells in layer 6 of the neocortex. , 2005, Cerebral cortex.

[52]  G. Snyder,et al.  A comparison of the electrophysiological properties of morphologically identified cells in layers 5B and 6 of the rat neocortex , 1992, Neuroscience.

[53]  Simona Temereanca,et al.  Functional Topography of Corticothalamic Feedback Enhances Thalamic Spatial Response Tuning in the Somatosensory Whisker/Barrel System , 2004, Neuron.

[54]  S. Aglioti,et al.  Corpus callosum and simple visuomotor integration , 1995, Neuropsychologia.

[55]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[56]  J R Huguenard,et al.  Properties of excitatory synaptic connections mediated by the corpus callosum in the developing rat neocortex. , 2001, Journal of neurophysiology.

[57]  R. Baughman,et al.  GABAergic Transcallosal Neurons in Developing Rat Neocortex , 1997, The European journal of neuroscience.

[58]  P. Somogyi,et al.  Large variability in synaptic n-methyl-d-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus , 2003, Neuroscience.

[59]  A. Elberger The corpus callosum provides a massive transitory input to the visual cortex of cat and rat during early postnatal development , 1994, Behavioural Brain Research.

[60]  G. Innocenti General Organization of Callosal Connections in the Cerebral Cortex , 1986 .

[61]  Igor Timofeev,et al.  Synaptic enhancement induced through callosal pathways in cat association cortex. , 2004, Journal of neurophysiology.

[62]  Angelo Quattrini,et al.  Posterior Corpus Callosum and Interhemispheric Transfer of Somatosensory Information: An fMRI and Neuropsychological Study of a Partially Callosotomized Patient , 2001, Journal of Cognitive Neuroscience.

[63]  M. Andresen,et al.  Reliability of monosynaptic sensory transmission in brain stem neurons in vitro. , 2001, Journal of neurophysiology.

[64]  G. Innocenti,et al.  Neurons in the corpus callosum of the cat during postnatal development , 2004, The European journal of neuroscience.