On the Parameterization of Evaporation of Raindrops as Simulated by a One-Dimensional Rainshaft Model

The process of evaporation of raindrops below cloud base is investigated by numerical simulations using a one-dimensional rainshaft model with bin microphysics. The simulations reveal a high variability of the shape of the raindrop size distributions, which has important implications for the efficiency of evaporation below cloud base. A new parameterization of the shape of the raindrop size distribution as a function of the mean volume diameter is suggested and applied in a two-moment microphysical scheme. In addition, the effect of evaporation on the number concentration of raindrops is parameterized. A comparison of results of the revised two-moment scheme and the bin microphysics rainshaft model shows that the two-moment scheme is able to reproduce the results of the reference model in a wide parameter range.

[1]  Roy Rasmussen,et al.  A Statistical and Physical Description of Hydrometeor Distributions in Colorado Snowstorms Using a Video Disdrometer , 2007 .

[2]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part IV: Sensitivity Experiments , 2006 .

[3]  H. Morrison,et al.  Comparison of Bulk and Bin Warm-Rain Microphysics Models Using a Kinematic Framework , 2007 .

[4]  K. D. Beheng,et al.  A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description , 2006 .

[5]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description , 2005 .

[6]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter , 2005 .

[7]  Axel Seifert,et al.  On the shape-slope relation of drop size distributions in convective rain , 2005 .

[8]  Alexander Khain,et al.  Possible Effects of Collisional Breakup on Mixed-Phase Deep Convection Simulated by a Spectral (Bin) Cloud Model , 2005 .

[9]  B. Stevens,et al.  Observations of Drizzle in Nocturnal Marine Stratocumulus , 2005 .

[10]  Guifu Zhang,et al.  The Shape–Slope Relation in Observed Gamma Raindrop Size Distributions: Statistical Error or Useful Information? , 2003 .

[11]  Guifu Zhang,et al.  An Evaluation of a Drop Distribution-Based Polarimetric Radar Rainfall Estimator , 2003 .

[12]  K. D. Beheng,et al.  A double-moment parameterization for simulating autoconversion, accretion and selfcollection , 2001 .

[13]  Robert A. Black,et al.  The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing , 2001 .

[14]  Guifu Zhang,et al.  A method for estimating rain rate and drop size distribution from polarimetric radar measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[15]  M. Shapiro,et al.  Collision Efficiency of Drops in a Wide Range of Reynolds Numbers: Effects of Pressure on Spectrum Evolution , 2001 .

[16]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[17]  Andreas Bott,et al.  A Flux Method for the Numerical Solution of the Stochastic Collection Equation , 1998 .

[18]  R. Rasmussen,et al.  Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model , 1998 .

[19]  P. Brown Mass Conservation Considerations in Analytic Representation of Raindrop Fragment Distributions , 1997 .

[20]  Harry T. Ochs,et al.  Collisions between Small Precipitation Drops. Part II: Formulas for Coalescence, Temporary Coalescence, and Satellites. , 1995 .

[21]  R. C. Srivastava,et al.  Evolution of Raindrop Size Distribution by Coalescence, Breakup, and Evaporation: Theory and Observations , 1995 .

[22]  Warner L. Ecklund,et al.  Comparison of Raindrop Size Distributions Measured by Radar Wind Profiler and by Airplane , 1993 .

[23]  R. C. Srivastava On the Scaling of Equations Governing the Evolution of Raindrop Size Distributions , 1988 .

[24]  R. Stewart,et al.  Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain , 1987 .

[25]  Philip S. Brown,et al.  Analysis of the Low and List Drop-Breakup Formulation , 1986 .

[26]  Kenneth C. Young,et al.  Number Fluxes in Equilibrium Raindrop Populations: A Markov Chain Analysis , 1985 .

[27]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[28]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[29]  Roland List,et al.  Collision, Coalescence and Breakup of Raindrops. Part II: Parameterization of Fragment Size Distributions , 1982 .

[30]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[31]  K. Beard Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft , 1976 .

[32]  Rainer Bleck,et al.  A fast, approximative method for integrating the stochastic coalescence equation , 1970 .

[33]  E. Kessler On the distribution and continuity of water substance in atmospheric circulations , 1969 .