14. Particle Methods

[1]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[2]  R. Rubinstein,et al.  HOW TO GENERATE UNIFORM SAMPLES ON DISCRETE SETS USING THE SPLITTING METHOD , 2010, Probability in the Engineering and Informational Sciences.

[3]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[4]  N. Chopin A sequential particle filter method for static models , 2002 .

[5]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[6]  S. Kou,et al.  Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.

[7]  Bruno Tuffin,et al.  Splitting for rare-event simulation , 2006, WSC.

[8]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[9]  W. Gander,et al.  Adaptive Quadrature—Revisited , 2000 .

[10]  Bruno Tuffin,et al.  Rare events, splitting, and quasi-Monte Carlo , 2007, TOMC.

[11]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo Methods for Computing Bayes Factors , 2001 .

[12]  R. Rubinstein Randomized Algorithms with Splitting: Why the Classic Randomized Algorithms Do Not Work and How to Make them Work , 2010 .

[13]  S. Senju,et al.  An Approach to Linear Programming with 0--1 Variables , 1968 .

[14]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[15]  Dirk P. Kroese,et al.  A comparison of RESTART implementations , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[16]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[17]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .